Analytic study on solitons in the nonlinear fibers with time-modulated parabolic law nonlinearity and Raman effect

Optik - Tập 125 - Trang 3142-3144 - 2014
Qin Zhou1
1Department of Physics, Wuhan University, Wuhan 430072, PR China

Tài liệu tham khảo

Tian, 2005, Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers, Phys. Lett. A, 342, 228, 10.1016/j.physleta.2005.05.041 Belmonte-Beitia, 2007, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Phys. Rev. Lett., 98, 064102, 10.1103/PhysRevLett.98.064102 Belmonte-Beitia, 2008, Localized nonlinear waves in systems with time- and space-modulated nonlinearities, Phys. Rev. Lett., 100, 164102, 10.1103/PhysRevLett.100.164102 Tian, 2011, Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity, Phys. Rev. E, 83, 016602, 10.1103/PhysRevE.83.016602 Biswas, 2010, Optical soliton perturbation with time-dependent coefficients in a log law media, Appl. Math. Comput., 217, 2891 Tang, 2007, Solution of the one-dimensional spatially inhomogeneous cubic–quintic nonlinear Schrödinger equation with an external potential, Phys. Rev. A, 76, 013612, 10.1103/PhysRevA.76.013612 Topkara, 2010, Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients, Commun. Nonlinear Sci. Numer. Simulat., 15, 2320, 10.1016/j.cnsns.2009.09.029 Saha, 2009, Dark optical solitons in power law media with time-dependent coefficients, Phys. Lett. A, 373, 4438, 10.1016/j.physleta.2009.10.011 Yan, 2010, Nonautonomous “rogons” in the inhomogeneous nonlinear Schrödinger equation with variable coefficients, Phys. Lett. A, 374, 672, 10.1016/j.physleta.2009.11.030 Wang, 2010, Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity, Phys. Rev. A, 81, 025604, 10.1103/PhysRevA.81.025604 Agrawal, 2007 Biswas, 2007 Triki, 2009, The sub-ODE method and soliton solutions for a higher order dispersive cubic–quintic nonlinear Schrödinger equation, Chaos Solitons Fract., 42, 1068, 10.1016/j.chaos.2009.02.035 Shehata, 2010, The traveling wave solutions of the perturbed nonlinear Schrödinger equation and the cubic–quintic Ginzburg Landau equation using the modifed (G′/G)-expansion method, Appl. Math. Comput., 217, 1 Wang, 2008, The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372, 417, 10.1016/j.physleta.2007.07.051 Lou, 2006, Finite symmetry transformation groups and exact solutions of Lax integrable systems, Chaos Solitons Fract., 30, 804, 10.1016/j.chaos.2005.04.090 Ye, 2009, Finite symmetry transformation groups and exact solutions of the cylindrical Korteweg-de Vries equation, Chaos Solitons Fract., 42, 2623, 10.1016/j.chaos.2009.03.186 Liu, 2001, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289, 69, 10.1016/S0375-9601(01)00580-1 Biswas, 2007, Higher-order Gabitov-Turitsyn equation for solitons in optical fibers, Optik, 118, 120, 10.1016/j.ijleo.2006.01.010 Shwetanshumala, 2008, Spatial optical solitons in inhomogeneous elliptic core saturating nonlinear fiber, Optik, 119, 403, 10.1016/j.ijleo.2006.12.008 Biswas, 2007, Stochastic perturbation of non-Kerr law optical solitons, Optik, 118, 471, 10.1016/j.ijleo.2006.05.001