Geodesics for a class of distances in the space of probability measures
Tóm tắt
In this paper, we study the characterization of geodesics for a class of distances between probability measures introduced by Dolbeault, Nazaret and Savaré. We first prove the existence of a potential function and then give necessary and sufficient optimality conditions that take the form of a coupled system of PDEs somehow similar to the Mean-Field-Games system of Lasry and Lions. We also consider an equivalent formulation posed in a set of probability measures over curves.
Tài liệu tham khảo
Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probabiliy measures. Lectures Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005)
Benamou J.D., Brenier Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)
Brenier Y., Puel M.: Optimal multiphase transportation with prescribed momentum. Tribut. JL. Lions ESAIM Control Optim. Calc. 8, 287–343 (2002)
Brasco L., Carlier G., Santambrogio F.: Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93(2), 163–182 (2010)
Carlier G., Jimenez C., Santambrogio F.: Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47(3), 1330–1350 (2008)
Carrillo J.A., Lisini S., Savaré G., Slepcev D.: Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258, 1273–1309 (2010)
Dacorogna B., Moser J.: On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1–26 (1990)
Dolbeault J., Nazaret B., Savaré G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009)
Lasry J.-M., Lions P.-L.: Jeux à à champ moyen II. Horizon fini et contrôle optimal.French Mean field games. II. Finite horizon and optimal control. Comptes Rendus Math. Acad. Sci. Paris 343(10), 679–684 (2006)
Lasry J.-M., Lions P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
Lisini S., Marigonda A.: On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals. Manuscripta Math. 133(1–2), 197–224 (2010)
McCann R.J.: A convexity principle for interacting cases. Adv. Math. 128(1), 153–179 (1997)
Rockafellar R.T.: Integrals which are convex functionals, II. Pac. J. Math. 39, 439–469 (1971)