Geodesics for a class of distances in the space of probability measures

Springer Science and Business Media LLC - Tập 48 - Trang 395-420 - 2012
P. Cardaliaguet1, G. Carlier1, B. Nazaret1
1CEREMADE, UMR CNRS 7534, Université Paris Dauphine, Paris Cedex 16, France

Tóm tắt

In this paper, we study the characterization of geodesics for a class of distances between probability measures introduced by Dolbeault, Nazaret and Savaré. We first prove the existence of a potential function and then give necessary and sufficient optimality conditions that take the form of a coupled system of PDEs somehow similar to the Mean-Field-Games system of Lasry and Lions. We also consider an equivalent formulation posed in a set of probability measures over curves.

Tài liệu tham khảo

Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probabiliy measures. Lectures Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005) Benamou J.D., Brenier Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000) Brenier Y., Puel M.: Optimal multiphase transportation with prescribed momentum. Tribut. JL. Lions ESAIM Control Optim. Calc. 8, 287–343 (2002) Brasco L., Carlier G., Santambrogio F.: Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93(2), 163–182 (2010) Carlier G., Jimenez C., Santambrogio F.: Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47(3), 1330–1350 (2008) Carrillo J.A., Lisini S., Savaré G., Slepcev D.: Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258, 1273–1309 (2010) Dacorogna B., Moser J.: On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1–26 (1990) Dolbeault J., Nazaret B., Savaré G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009) Lasry J.-M., Lions P.-L.: Jeux à à champ moyen II. Horizon fini et contrôle optimal.French Mean field games. II. Finite horizon and optimal control. Comptes Rendus Math. Acad. Sci. Paris 343(10), 679–684 (2006) Lasry J.-M., Lions P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007) Lisini S., Marigonda A.: On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals. Manuscripta Math. 133(1–2), 197–224 (2010) McCann R.J.: A convexity principle for interacting cases. Adv. Math. 128(1), 153–179 (1997) Rockafellar R.T.: Integrals which are convex functionals, II. Pac. J. Math. 39, 439–469 (1971)