A note on the equivariant Dold–Thom theorem

Journal of Pure and Applied Algebra - Tập 183 - Trang 299-312 - 2003
Pedro F. dos Santos1
1Department of Mathematics, Instituto Superior Técnico, Universidade Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal

Tài liệu tham khảo

P.F. dos Santos, Algebraic cycles on real varieties and z/2-homotopy theory, Proc. London Math. Soc 86 (2003) 513–544. Friedlander, 1991, Algebraic cycles, Chow varieties and Lawson homology, Compositio Math., 77, 55 E.M. Friedlander, B. Mazur, Filtrations on the homology of algebraic varieties, Mem. Amer. Math. Soc. 110 (529) (1994) x+110 (with an appendix by Daniel Quillen). Goerss, 1999, Simplicial Homotopy Theory, Vol. 174 Lewis, 1992, The equivariant Hurewicz map, Trans. Amer. Math. Soc., 329, 433, 10.1090/S0002-9947-1992-1049614-9 Lewis, 1986, Equivariant Stable Homotopy Theory, Vol. 1213 Lima-Filho, 1992, Lawson homology for quasi-projective varieties, Compositio Math., 84, 1 Lima-Filho, 1997, On the equivariant homotopy of free abelian groups on G-spaces and G-spectra, Mathematische Z., 224, 567, 10.1007/PL00004297 Mandell, 2002, Equivariant Orthogonal Spectra and S-modules, Vol. 159 May, 1996, Equivariant Homotopy and Cohomology Theory, Vol. 91 McCord, 1969, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc., 146, 273, 10.1090/S0002-9947-1969-0251719-4 Tom Dieck, 1987, Transformation Groups, Vol. 8