Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Saha GB (2012) Physics and radiobiology of nuclear medicine. Springer, New York
Sakr TM, El-Safoury DM, Awad GAS, Motaleb MA (2013) Biodistribution of 99mTc-sunitinib as a potential radiotracer for tumor hypoxia imaging. J Label Compd Radiopharm 56:392–395
Etzioni R, Urban N, Ramsey S et al (2003) Early detection: the case for early detection. Nat Rev Cancer 3:243
Marten K, Bremer C, Khazaie K, Sameni M, Sloane B, Tung CH, Weissleder R (2002) Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122:406–414
Alencar H, Mahmood U, Kawano Y, Hirata T, Weissleder R (2005) Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia 7:977–983
Harisinghani MG, Barentsz J, Hahn PF, Deserno W, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499
Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354:496–507
Altiparmak B, Lambrecht FY, Bayrak E, Durkan K (2010) Design and synthesis of 99mTc-citro-folate for use as a tumor-targeted radiopharmaceutical. Int J Pharm 400:8–14
Santos-Cuevas CL, Ferro-Flores G, de Murphy CA, Ramírez FDM, Luna- Gutiérrez MA, Pedraza-López M, García-Becerra R, Ordaz-Rosado D (2009) Design, preparation, in vitro and in vivo evaluation of 99mTc-N2S2-Tat (49-57)-bombesin: a target-specific hybrid radiopharmaceutical. Int J Pharm 375:75–83
de Barros ALB, das Graças Mota L, de Aguiar Ferreira C, de Oliveira MC, de Góes AM, Cardoso VN (2010) Bombesin derivative radiolabeled with technetium-99m as agent for tumor identification. Bioorg Med Chem Lett 20:6182–6184
Sakr TM, Motaleb MA, Ibrahim IT (2012) 99mTc-meropenem as a potential SPECT imaging probe for tumor hypoxia. J Radioanal Nucl Chem 291:705–710
Sakr TM, Essa BM, El-Essawy FA, El-Mohty AA (2014) Synthesis and biodistribution of 99mTc-PyDA as a potential marker for tumor hypoxia imaging. Radiochemistry 56:76–80
Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F] fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428
Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, Peters LJ (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncolo. J Clin Oncol 24:2098–2104
Parliament MB, Chapman JD, Urtasun RC, McEwan AJ, Golberg L, Mercer JR, Mannan RH, Wiebe LI (1992) Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 65:90
Stypinski D, McQuarrie SA, McEwan AJB, Wiebe LI (2018) Pharmacokinetics and scintigraphic imaging of the hypoxia-imaging agent [123I] IAZA in healthy adults following exercise-based cardiac stress. Pharmaceutics 10:25
Quon A, Gambhir SS (2005) FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol 23:1664–1673
Guller U, Nitzsche EU, Schirp U, Viehl CT, Torhorst J, Moch H, Langer I, Marti WR, Oertli D, Harder F, Zuber M (2002) Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-d-glucose: not yet! Breast Cancer Res Treat 71:171–173
Larson SM (1994) Cancer or inflammation? A holy grail for nuclear medicine. J Nucl Med 35:1653–1655
Stöber B, Tanase U, Herz M et al (2006) Differentiation of tumour and inflammation: characterisation of [methyl-3 H] methionine (MET) and O-(2-[18F] fluoroethyl)-l-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 33:932–939
Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980
Kubota K, Kubota R, Yamada S, Tada M (1995) Effects of radiotherapy on the cellular uptake of carbon-14 labeledl-methionine in tumor tissue. Nucl Med Biol 22:193–198
Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N (1995) High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36:1301–1306
Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36:484–492
Sugawara Y, Gutowski TD, Fisher SJ, Brown RS, Wahl RL (1999) Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, l-methionine, 67 Ga-citrate, and 125I-HSA. Eur J Nucl Med 26:333–341
Reinhardt MJ, Kubota K, Yamada S, Iwata R, Yaegashi H (1997) Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, l-methionine and thymidine. J Nucl Med 38:280
Gutowski TD (1992) Experimental studies of 18-F-2-fluoro-2-deoxy-d-glucose (FDG) in infection and in reactive lymph nodes. J Nucl Med 33:925
Wahl RL, Fisher SJ (1993) A comparison of FDG, l-methionine and thymidine accumulation into experimental infections and reactive lymph-nodes. J Nucl Med 34:104
Al-Wabli RI, Sakr TM, Khedr MA, Selim AA, El MA, Zaghary WA (2016) Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99 m. Chem Cent J 10:1–12
Wan WX, Yang M, Pan SR, Yu CJ, Wu NJ (2008) [99m Tc]polyamine analogs as potential tumor imaging agent. Drug Dev Res 69:520–525
Mallia MB, Subramanian S, Mathur A et al (2010) Synthesis and evaluation of 2-, 4-, 5-substituted nitroimidazole-iminodiacetic acid-99mTc(CO)3 complexes to target hypoxic tumors. J Label Compd Radiopharm 53:535–542
Wang J, Yang J, Yan Z, Duan X, Tan C, Shen Y, Wu W (2011) Synthesis and preliminary biological evaluation of [99mTc(CO)3(IDA–PEG3–CB)]− for tumor imaging. J Radioanal Nucl Chem 287:465–469
Ding R, He Y, Xu J, Liu H, Wang X, Feng M, Qi C, Zhang J, Peng C (2012) Preparation and bioevaluation of 99mTc nitrido radiopharmaceuticals with pyrazolo[1,5-a]pyrimidine as tumor imaging agents. Med Chem Res 21:523–530
Machac J, Krynyckyi B, Kim C (2002) Peptide and antibody imaging in lung cancer. Semin Nucl Med 32:276–292
Ibrahim AB, Sakr TM, Khoweysa OM, Motaleb MA, El-Bary AA, El-Kolaly MT (2014) Formulation and preclinical evaluation of 99mTc-gemcitabine as a novel radiopharmaceutical for solid tumor imaging. J Radioanal Nucl Chem 302:179–186
Hsia CC, Huang FL, Hung GU, Shen LH, Chen CL, Wang HE (2011) The biological characterization of 99mTc-BnAO-NI as a SPECT probe for imaging hypoxia in a sarcoma-bearing mouse model. Appl Radiat Isot 69:649–655
Kuchar M, Oliveira MC, Gano L, Santos I, Kniess T (2012) Radioiodinated sunitinib as a potential radiotracer for imaging angiogenesis—radiosynthesis and first radiopharmacological evaluation of 5-[125I]Iodo-sunitinib. Bioorg Med Chem Lett 22:2850–2855
Baishya R, Nayak DK, Chatterjee N, Halder KK, Karmakar S, Debnath MC (2014) Synthesis, characterization, and biological evaluation of 99mTc(CO)3-labeled peptides for potential use as tumor targeted radiopharmaceuticals. Chem Biol Drug Des 83:58–70
Breeman WA, Hofland LJ, Bakker WH, van der Pluij M, Van Koetsveld PM, de Jong M, Setyono-Han B, Kwekkeboom DJ, Visser TJ, Lamberts SW, Krenning EP (1993) Radioiodinated somatostatin analogue RC-160: preparation, biological activity, in vivo application in rats and comparison with [123I-Tyr3]octreotide. Eur J Nucl Med 20:1089–1094
Maecke HR, Reubi JC (2011) Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med 52:841–844. https://doi.org/10.2967/jnumed.110.084236
Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170
Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45:649–656
Momparler RL, Karon M, Siegel SE, Avila F (1976) Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 36:2891–2895
Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433
Frederick CA, Williams LD, Ughetto G, Van der Marel GA, Van Boom JH, Rich A, Wang AH (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29:2538–2549
Pigram W-J, Fuller W, Hamilton LD (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol 235:17
Carlson M, Watson AL, Anderson L, Largaespada DA, Provenzano PP (2017) Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors. J Biomed Opt 22:116010
Zweit J, Carnochan P, Goodall R, Ott R (1994) Nickel-57-doxorubicin, a potential radiotracer for pharmacokinetic studies using PET: production and radiolabelling. J Nucl Biol Med Med (Turin, Italy 1991) 38:18–21
Rizvi FA, Bokhari TH, Roohi S, Mushtaq A (2012) Direct labeling of doxorubicin with technetium-99m: its optimization, characterization and quality control. J Radioanal Nucl Chem 293:303–307
Fernandes RS, de Oliveira Silva J, Lopes SCA, Chondrogiannis S, Rubello D, Cardoso VN, Oliveira MC, Ferreira LA, de Barros AL (2016) Technetium-99m-labeled doxorubicin as an imaging probe for murine breast tumor (4T1 cell line) identification. Nucl Med Commun 37:307–312
Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568
Swidan MM, Sakr TM, Motaleb MA et al (2014) Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging. J Label Compd Radiopharm 57:593–599
Swidan MM, Sakr TM, Motaleb MA, El-Bary AA, El-Kolaly MT (2015) Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging. J Radioanal Nucl Chem 303:531–539
Sakr TM (2014) Synthesis and preliminary affinity testing of 123I/125I-N-(3-iodophenyl)-2-methylpyrimidine-4,6-diamine as a novel potential lung scintigraphic agent. Radiochemistry 56:200–206
Ibrahim AB, Sakr TM, Khoweysa OM, Motaleb MA, El-Bary AA, El-Kolaly MT (2015) Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging. J Radioanal Nucl Chem 303:967–975
Essa BM, Sakr TM, Khedr MA, El-Essawy FA, El-Mohty AA (2015) 99mTc-amitrole as a novel selective imaging probe for solid tumor: in silico and preclinical pharmacological study. Eur J Pharm Sci 76:102–109
Sakr TM, Nawar MF, Fasih TW, El-Bayoumy S, El-Rehim HA (2017) Nano-technology contributions towards the development of high performance radioisotope generators: the future promise to meet the continuing clinical demand. Appl Radiat Isot 129:67–75
Mohamed KO, Nissan YM, El-Malah AA, Ahmed WA, Ibrahim DM, Sakr TM, Motaleb MA (2017) Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers. Eur J Med Chem 135:424–433
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791
Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B (2012) AMBER 12. University of California, San Francisco
Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation1. J Mol Biol 285:1735–1747
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65:712–725
Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260
Alaraby Salem M, Brown A (2015) Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics. Phys Chem Chem Phys 17:25563–25571
Roe DR, Cheatham TE (2013) PTRAJ and {CPPTRAJ}: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095
Turner PJ (2005) XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR