Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites

Composites Science and Technology - Tập 72 - Trang 218-224 - 2012
H. Varela-Rizo1, G. Montes de Oca1, I. Rodriguez-Pastor1, M. Monti2, A. Terenzi2, I. Martin-Gullon1
1Chemical Engineering Department, University of Alicante, Carretera de San Vicente s/n, 03690 Alicante, Spain
2Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy

Tài liệu tham khảo

Sarwar, 2008, Poly (ether amide) and silica nanocomposites derived from sol–gel process, J Sol–Gel Sci Technol, 45, 89, 10.1007/s10971-007-1640-9 Janes, 2011, Dispersion morphology of poly(methyl acrylate)/silica nanocomposites, Macromolecules, 44, 4920, 10.1021/ma200205j Kim, 2008, Fracture toughness of the nano-particle reinforced epoxy composite, Compos Struct, 86, 69, 10.1016/j.compstruct.2008.03.005 Rahatekar, 2010, Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites, Polym Degrad Stabil, 95, 870, 10.1016/j.polymdegradstab.2010.01.003 Rafiee, 2009, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 3884, 10.1021/nn9010472 Stankovich, 2006, Graphene-based composite materials, Nature, 442, 282, 10.1038/nature04969 Andrews, 2002, Fabrication of carbon multiwall nanotube/polymer composites by shear mixing, Macromol Mater Eng, 287, 395, 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S Thostenson, 2002, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization, J Phys D Appl Phys, 35, L77, 10.1088/0022-3727/35/16/103 Vera-Agullo, 2009, Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites, Compos Sci Technol, 69, 1521, 10.1016/j.compscitech.2008.11.032 Bortz, 2011, Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system, Compos Sci Technol, 71, 31, 10.1016/j.compscitech.2010.09.015 Tibbetts, 1999, Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices, J Mater Res, 14, 2871, 10.1557/JMR.1999.0383 Lozano, 2004, Nanofiber toughened polyethylene composites, Carbon, 42, 2329, 10.1016/j.carbon.2004.03.021 Shaffer, 2007, Carbon nanotube/nanofibre polymercomposites, 1 Skákalová, 2005, Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA, Synth Metal, 152, 349, 10.1016/j.synthmet.2005.07.291 Moisala, 2006, Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, Compos Sci Technol, 66, 1285, 10.1016/j.compscitech.2005.10.016 Manchado, 2005, Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing, Carbon, 43, 1499, 10.1016/j.carbon.2005.01.031 Kashiwagi, 2005, Nanoparticle networks reduce the flammability of polymer nanocomposites, Nat Mater, 4, 928, 10.1038/nmat1502 Haggenmueller, 2000, Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem Phys Lett, 330, 219, 10.1016/S0009-2614(00)01013-7 Du, 2004, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules, 37, 9048, 10.1021/ma049164g Mathur, 2008, Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites, Polym Compos, 29, 717, 10.1002/pc.20449 Velasco-Santos, 2003, Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization, Chem Mater, 15, 4470, 10.1021/cm034243c Choi, 2005, Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers, Carbon, 43, 2199, 10.1016/j.carbon.2005.03.036 Zeng, 2004, Processing and properties of poly(methyl methacrylate)/carbon nanofiber composites, Compos Part B-E, 35, 245, 10.1016/j.compositesb.2003.08.009 Patton, 2002, Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites, Compos Part A-Appl S, 33, 243, 10.1016/S1359-835X(01)00092-6 Patton, 1999, Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices, Compos Part A-Appl S, 30, 1081, 10.1016/S1359-835X(99)00018-4 Pham, 2008, Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing, Compos Part B-E, 39, 209, 10.1016/j.compositesb.2007.02.024 Martin-Gullon, 2006, Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor, Carbon, 44, 1572, 10.1016/j.carbon.2005.12.027 Vera-Agullo, 2007, Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers, Carbon, 45, 2751, 10.1016/j.carbon.2007.09.040 Vera-Agullo, 2007, Analytical pyrolysis as a characterization technique for monitoring the production of carbon nanofilaments, J Anal Appl Pyrol, 79, 484, 10.1016/j.jaap.2006.11.012 UNE-EN-ISO 527-1. Determinación de las propiedades de tracción. Parte 1: Principios generales; 1996. ASTM D 790. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials; 1999. Jia, 1999, Study on poly(methyl methacrylate)/carbon nanotube composites, Mater Sci Eng, 271, 395, 10.1016/S0921-5093(99)00263-4 Kim, 2008, Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate), Compos Sci Technol, 68, 2120, 10.1016/j.compscitech.2008.03.008 Pande, 2009, Synthesis and characterization of multiwalled carbon nanotubes-polymethyl methacrylate composites prepared by in situ polymerization method, Polym Compos, 30, 1312, 10.1002/pc.20696 Gojny, 2005, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study, Compos Sci Technol, 65, 2300, 10.1016/j.compscitech.2005.04.021 Liu, 2009, Processing and properties of carbon nanotube/poly(methyl methacrylate) composite films, J Appl Polym Sci, 112, 142, 10.1002/app.29372 Ramanathan, 2004, Functionalized SWNT polymer nanocomposites for dramatic property improvement, J Polym Sci Pol Phys, 43, 2269, 10.1002/polb.20510 Zhang, 2009, Amino functionalization and characteristics of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite, Diam Relat Mater, 18, 316, 10.1016/j.diamond.2008.08.005 Pötschke, 2003, Melt mixing of polycarbonate/multi-wall carbon nanotube composites, Compos Interfaces, 10, 389, 10.1163/156855403771953650 Ahn, 2002, A study on the rheological properties and processability of polycarbonate, J Appl Polym Sci, 86, 2921, 10.1002/app.11752 Park, 2005, Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite, Curr Appl Phys, 5, 302, 10.1016/j.cap.2004.02.013 Du, 2003, Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability, J Polym Sci Pol Phys, 41, 3333, 10.1002/polb.10701 Yuen, 2007, Silane-modified MWCNT/PMMA composites – preparation, electrical resistivity, thermal conductivity and thermal stability, Compos Part A-Appl S, 38, 2527, 10.1016/j.compositesa.2007.07.015 Hammel, 2004, Carbon nanofibers for composite applications, Carbon, 42, 1153, 10.1016/j.carbon.2003.12.043 Higgins, 2005, Polycarbonate carbon nanofiber composites, Eur Polym J, 41, 889, 10.1016/j.eurpolymj.2004.11.040 Benoit, 2001, Transport properties of PMMA-carbon nanotubes composites, Synth Metal, 121, 1215, 10.1016/S0379-6779(00)00838-9