Flat magnitude response FIR halfband low/high pass digital filters with narrow transition bands

Digital Signal Processing - Tập 20 - Trang 328-336 - 2010
Ishtiaq Rasool Khan1
1Institute for Infocomm Research, A*STAR, Singapore

Tài liệu tham khảo

Hermann, 1971, On the approximation problem in nonrecursive digital filter design, IEEE Trans. Circuit Theory, 18, 411, 10.1109/TCT.1971.1083275 Bromba, 1980, Explicit formula for filter function of maximally flat nonrecursive digital filters, Electron. Lett., 16, 905, 10.1049/el:19800644 Rajagopal, 1987, Design of maximally-flat FIR filters using the Bernstein polynomial, IEEE Trans. Circuits & Syst., 34, 1587, 10.1109/TCS.1987.1086077 Miller, 1972, Maximally flat nonrecursive digital filters, Electron. Lett., 8, 157, 10.1049/el:19720115 Fahmy, 1976, Maximally flat non-recursive digital filters, Int. J. Circuit Theory Appl., 4, 311, 10.1002/cta.4490040308 Gumacos, 1978, Weighting coefficients for certain maximally flat nonrecursive digital filters, IEEE Trans. Circuits & Syst., CAS-25, 234, 10.1109/TCS.1978.1084456 Baher, 1982, FIR digital filters with simultaneous conditions on amplitude and delay, Electron. Lett., 18, 296, 10.1049/el:19820202 Selesnick, 1998, Maximally flat low-pass FIR filters with reduced delay, IEEE Trans. Circuits & Syst.-II, 45, 53, 10.1109/82.659456 Samadi, 2000, Universal maximally flat lowpass FIR systems, IEEE Trans. Signal Process., 48, 1956-1964, 10.1109/78.847782 Pei, 2000, Closed-form design and efficient implementation of generalized maximally flat half-band FIR filters, IEEE Signal Process. Lett., 7, 149, 10.1109/97.844635 Jinaga, 1984, Coefficients of maximally flat nonrecursive digital filters, Signal Process., 7, 185, 10.1016/0165-1684(84)90075-6 Vaidyanathan, 1984, On maximally-flat linear-phase FIR filters, IEEE Trans. Circuits & Syst., CAS-31, 830, 10.1109/TCS.1984.1085581 Ansari, 1985, Elliptic filter design for a class of generalized halfband filters, IEEE Trans. Acoust. Speech Signal Process., 33, 1146, 10.1109/TASSP.1985.1164709 Zahradnik, 1999, Almost equiripple half-band filters, IEEE Trans. Circuits & Syst.-I, 46, 744, 10.1109/81.768831 Willson, 1999, A design method for half-band FIR filters, IEEE Trans. Circuits & Syst.-I, 45, 95, 10.1109/81.739257 Vaidyanathan, 1987, A ‘trick’ for the design of FIR half-band filters, IEEE Trans. Circuits & Syst., CAS-34, 297, 10.1109/TCS.1987.1086124 Zhang, 2000, Design of low-delay FIR half-band filters with arbitrary flatness and its application to filter banks, Electron. Comm. Japan 3, 8, 1, 10.1002/(SICI)1520-6440(200010)83:10<1::AID-ECJC1>3.0.CO;2-8 Parks, 1972, Chebyshev approximation for non-recursive digital filters with linear phase, IEEE Trans. Circuit Theory, 19, 189, 10.1109/TCT.1972.1083419 Khan, 2000, Efficient design of halfband low/high pass FIR filters using explicit formulas for tap coefficients, IEICE Trans. Fundament., E83-A, 2370 Pei, 1992, Relationships among digital one/half band filters, low/high order differentiators, and discrete/differentiating Hilbert transformers, IEEE Trans. Signal Process., 40, 694, 10.1109/78.120816 Khan, 1999, New design of full band differentiators based on Taylor series, IEE Proc. Vision Image & Signal Process., 146, 185, 10.1049/ip-vis:19990380 Khan, 2005, Digital differentiators for narrow band applications in the lower to midband range, 3721 Khan, 2007, Finite impulse response digital differentiators for midband frequencies based on maximal linearity constraints, IEEE Trans. Circuits & Syst.-II, 54, 242, 10.1109/TCSII.2006.889448 Patil, 2008, On the design of FIR wavelet filter banks using factorization of a halfband polynomial, IEEE Signal Process. Lett., 15, 485, 10.1109/LSP.2008.922295