Flat magnitude response FIR halfband low/high pass digital filters with narrow transition bands
Tài liệu tham khảo
Hermann, 1971, On the approximation problem in nonrecursive digital filter design, IEEE Trans. Circuit Theory, 18, 411, 10.1109/TCT.1971.1083275
Bromba, 1980, Explicit formula for filter function of maximally flat nonrecursive digital filters, Electron. Lett., 16, 905, 10.1049/el:19800644
Rajagopal, 1987, Design of maximally-flat FIR filters using the Bernstein polynomial, IEEE Trans. Circuits & Syst., 34, 1587, 10.1109/TCS.1987.1086077
Miller, 1972, Maximally flat nonrecursive digital filters, Electron. Lett., 8, 157, 10.1049/el:19720115
Fahmy, 1976, Maximally flat non-recursive digital filters, Int. J. Circuit Theory Appl., 4, 311, 10.1002/cta.4490040308
Gumacos, 1978, Weighting coefficients for certain maximally flat nonrecursive digital filters, IEEE Trans. Circuits & Syst., CAS-25, 234, 10.1109/TCS.1978.1084456
Baher, 1982, FIR digital filters with simultaneous conditions on amplitude and delay, Electron. Lett., 18, 296, 10.1049/el:19820202
Selesnick, 1998, Maximally flat low-pass FIR filters with reduced delay, IEEE Trans. Circuits & Syst.-II, 45, 53, 10.1109/82.659456
Samadi, 2000, Universal maximally flat lowpass FIR systems, IEEE Trans. Signal Process., 48, 1956-1964, 10.1109/78.847782
Pei, 2000, Closed-form design and efficient implementation of generalized maximally flat half-band FIR filters, IEEE Signal Process. Lett., 7, 149, 10.1109/97.844635
Jinaga, 1984, Coefficients of maximally flat nonrecursive digital filters, Signal Process., 7, 185, 10.1016/0165-1684(84)90075-6
Vaidyanathan, 1984, On maximally-flat linear-phase FIR filters, IEEE Trans. Circuits & Syst., CAS-31, 830, 10.1109/TCS.1984.1085581
Ansari, 1985, Elliptic filter design for a class of generalized halfband filters, IEEE Trans. Acoust. Speech Signal Process., 33, 1146, 10.1109/TASSP.1985.1164709
Zahradnik, 1999, Almost equiripple half-band filters, IEEE Trans. Circuits & Syst.-I, 46, 744, 10.1109/81.768831
Willson, 1999, A design method for half-band FIR filters, IEEE Trans. Circuits & Syst.-I, 45, 95, 10.1109/81.739257
Vaidyanathan, 1987, A ‘trick’ for the design of FIR half-band filters, IEEE Trans. Circuits & Syst., CAS-34, 297, 10.1109/TCS.1987.1086124
Zhang, 2000, Design of low-delay FIR half-band filters with arbitrary flatness and its application to filter banks, Electron. Comm. Japan 3, 8, 1, 10.1002/(SICI)1520-6440(200010)83:10<1::AID-ECJC1>3.0.CO;2-8
Parks, 1972, Chebyshev approximation for non-recursive digital filters with linear phase, IEEE Trans. Circuit Theory, 19, 189, 10.1109/TCT.1972.1083419
Khan, 2000, Efficient design of halfband low/high pass FIR filters using explicit formulas for tap coefficients, IEICE Trans. Fundament., E83-A, 2370
Pei, 1992, Relationships among digital one/half band filters, low/high order differentiators, and discrete/differentiating Hilbert transformers, IEEE Trans. Signal Process., 40, 694, 10.1109/78.120816
Khan, 1999, New design of full band differentiators based on Taylor series, IEE Proc. Vision Image & Signal Process., 146, 185, 10.1049/ip-vis:19990380
Khan, 2005, Digital differentiators for narrow band applications in the lower to midband range, 3721
Khan, 2007, Finite impulse response digital differentiators for midband frequencies based on maximal linearity constraints, IEEE Trans. Circuits & Syst.-II, 54, 242, 10.1109/TCSII.2006.889448
Patil, 2008, On the design of FIR wavelet filter banks using factorization of a halfband polynomial, IEEE Signal Process. Lett., 15, 485, 10.1109/LSP.2008.922295