Multibump nodal solutions for an indefinite superlinear elliptic problem

Journal of Differential Equations - Tập 247 - Trang 1001-1012 - 2009
Pedro M. Girão1, José Maria Gomes1
1Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Tài liệu tham khảo

Ackermann, 2005, Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting, Commun. Contemp. Math., 7, 269, 10.1142/S0219199705001763 Alama, 1996, Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13, 95, 10.1016/S0294-1449(16)30098-1 Alama, 1993, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1, 439, 10.1007/BF01206962 Bartsch, 2007, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann., 338, 147, 10.1007/s00208-006-0071-1 Bartsch, 2003, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal., 22, 1, 10.12775/TMNA.2003.025 Berestycki, 1995, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 2, 553, 10.1007/BF01210623 Bonheure, 2005, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214, 36, 10.1016/j.jde.2004.08.009 Castro, 1997, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27, 1041, 10.1216/rmjm/1181071858 Cerami, 1986, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69, 289, 10.1016/0022-1236(86)90094-7 Clapp, 2004, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential Equations, 21, 1, 10.1007/s00526-003-0241-x Costa, 2004, Non-zero solutions for a Schrödinger equation with indefinite linear and nonlinear terms, Proc. Roy. Soc. Edinburgh Sect. A, 134, 249, 10.1017/S0308210500003206 Coti Zelati, 1991, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, 693, 10.1090/S0894-0347-1991-1119200-3 Coti Zelati, 1992, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45, 1217, 10.1002/cpa.3160451002 Del Pino, 1998, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 127, 10.1016/S0294-1449(97)89296-7 Gaudenzi, 2004, A seven-positive-solutions theorem for a superlinear problem, Adv. Nonlinear Stud., 4, 149, 10.1515/ans-2004-0202 Li, 2001, Gluing approximate solutions of minimum type on the Nehari manifold, vol. 6, 215 Ramos, 2003, Remarks on a priori estimates for superlinear elliptic problems, 193 Ramos, 2008, Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations, 31, 1, 10.1007/s00526-007-0103-z Ramos, 1998, Superlinear indefinite elliptic problems and Pohožaev type identities, J. Funct. Anal., 159, 596, 10.1006/jfan.1998.3332 Séré, 1992, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209, 27, 10.1007/BF02570817 Tehrani, 1996, On indefinite superlinear elliptic equations, Calc. Var. Partial Differential Equations, 4, 139, 10.1007/BF01189951