Specifying coalgebras with modal logic

Theoretical Computer Science - Tập 260 - Trang 119-138 - 2001
Alexander Kurz1
1Centre for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB Amstelveen, The Netherlands

Tài liệu tham khảo

Cenciarelli, 1999, An event-based structural operational semantics of multi-threaded Java, vol. 1523, 157 G. Denker, P. Hartel, TROLL – an object oriented formal method for distributed information system design: syntax and pragmatics (TROLL Version 3.0), Technical Report Informatik Berichte 97-03, Technische Universität Braunschweig, 1997. Denker, 1997, A linear temporal logic approach to objects with transactions, vol. 1349, 170 Ehrich, 1998, Logics for specifying concurrent information systems, 167 R. Goldblatt, Logics of Time and Computation, CSLI Lecture Notes, vol. 7, 2nd ed. Center for the Study of Language and Information, Stanford University, 1992. R. Goldblatt, A framework for infinitary modal logic, in: Mathematics of Modality, Center for the Study of Language and Information, Stanford University, 1993, Chapter 9. R. Goldblatt, Saturation and the Hennessy–Milner property, in: A. Ponse et al. (Eds.), Modal Logic and Process Algebra, CSLI Lecture Notes, vol. 53, Center for the Study of Language and Information, Stanford University, 1995. H.P. Gumm, T. Schröder, Covarieties and complete covarieties, in: B. Jacobs, L. Moss, H. Reichel, J. Rutten (Eds.), Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in Theoretical Computer Science, vol. 11, 1998. P. Hartel, Konzeptionelle Modellierung von Informationssystemen als verteilte Objektsysteme. Reihe DISDBIS, infix-Verlag, Sankt Augustin, 1997. Hensel, 1998, Reasoning about classes in object-oriented languages, vol. 1381, 105 Hensel, 1995, Defining equations in terminal coalgebras, vol. 906, 307 M. Hollenberg, Hennessy–Milner classes and process algebra, in: A. Ponse, M. de Rijke, Y. Venema, (Eds.), Modal Logic and Process Algebra, CSLI Lecture Notes, vol. 53, Center for the Study of Language and Information, Stanford University, 1995. Jacobs, 1995, Mongruences and cofree coalgebras, vol. 936, 245 Jacobs, 1996, Objects and classes, co-algebraically, 83 B. Jacobs, Coalgebraic reasoning about classes in object-oriented languages, in: B. Jacobs, L. Moss, H. Reichel, J. Rutten (Eds.), Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in Theoretical Computer Science, 1998, pp. 235–246. B. Jacobs, Coalgebras in specification and verification for object-oriented languages, Newsletter 3 of the Dutch Association for Theoretical Computer Science (NVTI), 1999, pp. 15–27. Jacobs, 1998, 329 A. Kurz, A co-variety-theorem for modal logic, Proc. Advances in Modal Logic 2, Uppsala, 1998, Center for the Study of Language and Information, Stanford University, 2001. Moss, 1999, Coalgebraic logic, Ann. Pure Appl. Logic, 96, 277, 10.1016/S0168-0072(98)00042-6 Reichel, 1995, An approach to object semantics based on terminal co-algebras, Math. Struct. Comput. Sci., 5, 129, 10.1017/S0960129500000694 M. Rößiger, From modal logic to terminal coalgebras, this volume. Rutten, 2000, Universal coalgebra, Theoret. Comput. Sci., 249, 3, 10.1016/S0304-3975(00)00056-6 Segerberg, 1994, A model existence theorem in infinitary propositional modal logic, J. Philos. Logic, 23, 337, 10.1007/BF01048686 Uustalu, 1992, Combining object-oriented and logic paradigms, vol. 615, 98