Hybrid discrete/continuum algorithms for stochastic reaction networks

Journal of Computational Physics - Tập 281 - Trang 177-198 - 2015
Cosmin Safta1, Khachik Sargsyan1, Bert Debusschere1, Habib N. Najm1
1Sandia National Laboratories, Livermore, CA 94551-0969, United States

Tài liệu tham khảo

Gillespie, 1992, A rigorous derivation of the chemical master equation, Physica A, 188, 404, 10.1016/0378-4371(92)90283-V Gillespie, 1976, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 403, 10.1016/0021-9991(76)90041-3 Gillespie, 1977, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340, 10.1021/j100540a008 Gibson, 2000, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. A, 104, 1876, 10.1021/jp993732q Rathinam, 2003, Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method, J. Chem. Phys., 119, 12784, 10.1063/1.1627296 Gillespie, 2001, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115, 1716, 10.1063/1.1378322 Haseltine, 2002, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117, 6959, 10.1063/1.1505860 Cao, 2004, The numerical stability of leaping methods for stochastic simulation of chemically reacting systems, J. Chem. Phys., 121, 12169, 10.1063/1.1823412 Cao, 2005, The slow-scale stochastic simulation algorithm, J. Chem. Phys., 122, 014116, 10.1063/1.1824902 Cao, 2005, Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems, J. Comput. Phys., 206, 395, 10.1016/j.jcp.2004.12.014 E, 2007, Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales, J. Comput. Phys., 221, 158, 10.1016/j.jcp.2006.06.019 Sandu, 2014, A new look at the chemical master equation, Numer. Algorithms, 65, 485, 10.1007/s11075-013-9758-z Munsky, 2006, The finite state projection algorithm for the solution of the chemical master equation, J. Chem. Phys., 124, 10.1063/1.2145882 Munsky, 2007, A multiple time interval finite state projection algorithm for the solution to the chemical master equation, J. Comput. Phys., 226, 818, 10.1016/j.jcp.2007.05.016 Munsky, 2008, The finite state projection approach for the analysis of stochastic noise in gene networks, IEEE Trans. Autom. Control, 53, 201, 10.1109/TAC.2007.911361 Sunkara, 2010, An optimal finite state projection method, Proc. Comput. Sci., 1, 1579, 10.1016/j.procs.2010.04.177 Hegland, 2007, A solver for the stochastic master equation applied to gene regulatory networks, J. Comput. Appl. Math., 205, 708, 10.1016/j.cam.2006.02.053 MacNamara, 2008, Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation, J. Chem. Phys., 129, 95, 10.1063/1.2971036 MacNamara, 2008, Multiscale modeling of chemical kinetics via the master equation, Multiscale Model. Simul., 6, 1146, 10.1137/060678154 Sidje, 2007, Inexact uniformization method for computing transient distributions of Markov chains, SIAM J. Sci. Comput., 29, 2562, 10.1137/060662629 Zhang, 2010, A modified uniformization method for the solution of the chemical master equation, Comput. Math. Appl., 59, 573, 10.1016/j.camwa.2009.04.021 Peles, 2006, Reduction and solution of the chemical master equation using time scale separation and finite state projection, J. Chem. Phys., 125, 10.1063/1.2397685 Deuflhard, 2008, Adaptive discrete Galerkin methods applied to the chemical master equation, SIAM J. Sci. Comput., 30, 2990, 10.1137/070689759 Engblom, 2006 Engblom, 2009, Spectral approximation of solutions to the chemical master equation, J. Comput. Appl. Math., 229, 208, 10.1016/j.cam.2008.10.029 Zhang, 2010, Radial basis function collocation for the chemical master equation, Int. J. Comput. Methods, 07, 477, 10.1142/S0219876210002234 Jahnke, 2010, Solving chemical master equations by adaptive wavelet compression, J. Comput. Phys., 229, 5724, 10.1016/j.jcp.2010.04.015 Khanin, 2008, Chemical master equation and Langevin regimes for a gene transcription model, Theor. Comput. Sci., 408, 31, 10.1016/j.tcs.2008.07.007 Gardiner, 2004, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, vol. 13 Sjöberg, 2009, Fokker–Planck approximation of the master equation in molecular biology, Comput. Vis. Sci., 12, 37, 10.1007/s00791-006-0045-6 Sjöberg, 2007 Salis, 2005, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions, J. Chem. Phys., 122, 10.1063/1.1835951 Haseltine, 2005, On the origins of approximations for stochastic chemical kinetics, J. Chem. Phys., 123, 10.1063/1.2062048 Hellander, 2007, Hybrid method for the chemical master equation, J. Comput. Phys., 227, 100, 10.1016/j.jcp.2007.07.020 Sanft, 2011, Stochkit2: software for discrete stochastic simulation of biochemical systems with events, Bioinformatics, 27, 2457, 10.1093/bioinformatics/btr401 C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Technical Report, ICASE Report No. 97-65; NASA/CR-97-NASA/CR-206253, 1997. Vilar, 2002, Mechanisms of noise-resistance in genetic oscillators, Proc. Natl. Acad. Sci., 99, 5988, 10.1073/pnas.092133899 Elf, 2003, Near-critical phenomena in intracellular metabolite pools, Biophys. J., 84, 154, 10.1016/S0006-3495(03)74839-5 Ferm, 2004 Scott, 1992 Silverman, 1986 van Kampen, 1992 van Leer, 1979, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1 Lax, 1954, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., 7, 159, 10.1002/cpa.3160070112 LeVeque, 2002 Harten, 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357, 10.1016/0021-9991(83)90136-5 SWIG Oliphant, 2007, Python for scientific computing, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.58