An overview of the characteristics of advanced binders for high-performance Li–S batteries
Tài liệu tham khảo
Turcheniuk, 2018, Nature, 559, 467, 10.1038/d41586-018-05752-3
Wang, 2019, Adv. Mater., 31
Cano, 2018, Nature Energy, 3, 279, 10.1038/s41560-018-0108-1
Bruce, 2012, Nat. Mater., 11, 19, 10.1038/nmat3191
Goodenough, 2013, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438
Wang, 2002, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
Chung, 2018, Adv. Funct. Mater., 28, 10.1002/adfm.201801188
Wahyudi, 2018, Adv. Funct. Mater., 28, 10.1002/adfm.201802244
Xu, 2015, Adv. Funct. Mater., 25, 4312, 10.1002/adfm.201500983
Chung, 2013, Nat. Chem., 5, 518, 10.1038/nchem.1624
Li, 2018, Small, 14, 1701986, 10.1002/smll.201701986
Yang, 2020, Adv. Energy Mater., 10, 10.1002/aenm.201904264
Bresser, 2018, Energy Environ. Sci., 11, 3096, 10.1039/C8EE00640G
Zhang, 2012, J. Electrochem. Soc., 159, A1226, 10.1149/2.039208jes
Zhong, 2019, ACS Appl. Mater. Interfaces, 11, 28968, 10.1021/acsami.9b09604
Tu, 2018, Adv. Mater., 30, 10.1002/adma.201804581
Zeng, 2015, ACS Appl. Mater. Interfaces, 7, 26257, 10.1021/acsami.5b08537
Fang, 2017, Adv. Mater., 29, 10.1002/adma.201606823
Li, 2020, Adv. Mater., 32
Manthiram, 2014, Chem. Rev., 114, 11751, 10.1021/cr500062v
Zhong, 2016, Solid State Ionics, 289, 23, 10.1016/j.ssi.2016.02.005
Zhang, 2017, Nanomater. Energy, 40, 559, 10.1016/j.nanoen.2017.09.003
Walus, 2016, Electrochim. Acta, 210, 492, 10.1016/j.electacta.2016.05.130
Guo, 2020, ChemSusChem, 13, 819, 10.1002/cssc.201902772
Lv, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201402290
Peng, 2016, Angew. Chem. Int. Ed., 55, 12990, 10.1002/anie.201605676
Pang, 2016, Nature Energy, 1, 10.1038/nenergy.2016.132
Cleaver, 2017, J. Electrochem. Soc., 165, A6029, 10.1149/2.0071801jes
Dirlam, 2017, J. Polym. Sci., Polym. Chem. Ed., 55, 1635, 10.1002/pola.28551
Li, 2017, Adv. Energy Mater., 7
Wild, 2015, Energy Environ. Sci., 8, 3477, 10.1039/C5EE01388G
Wang, 2014, Nat. Commun., 5, 5002, 10.1038/ncomms6002
Cao, 2016, Adv. Funct. Mater., 26, 3059, 10.1002/adfm.201505074
Li, 2020, J. Am. Chem. Soc., 142, 3583, 10.1021/jacs.9b13303
Hua, 2017, ACS Nano, 11, 2209, 10.1021/acsnano.6b08627
Zhou, 2020, ACS Nano, 14, 7538, 10.1021/acsnano.0c03403
Ding, 2020
Lacey, 2013, Chem. Commun., 49, 8531, 10.1039/c3cc44772c
Zhang, 2012, ECS Electrochemistry Letters, 1, A34, 10.1149/2.009202eel
Pei, 2018, J. Electrochem. Soc., 166, A5215, 10.1149/2.0291903jes
Ma, 2019, Energy Storage Mater., 20, 146, 10.1016/j.ensm.2018.11.013
Loghavi, 2020, Z. Phys. Chem., 234, 381
Chen, 2018, Chem. Rev., 118, 8936, 10.1021/acs.chemrev.8b00241
Chou, 2014, Phys. Chem. Chem. Phys., 16, 20347, 10.1039/C4CP02475C
Yuan, 2018, Adv. Energy Mater., 8, 1802107, 10.1002/aenm.201802107
Liu, 2020, ACS Appl. Mater. Interfaces, 12, 17592, 10.1021/acsami.0c00537
Sahore, 2020, Acs Sustain Chem Eng, 8, 3162, 10.1021/acssuschemeng.9b06363
Ryu, 2016, Mater. Res. Bull., 82, 102, 10.1016/j.materresbull.2016.03.027
Srivastava, 2014, Adv. Mater., 26, 201, 10.1002/adma.201303070
Zhang, 2019, Energy Storage Mater., 17, 293, 10.1016/j.ensm.2018.07.006
Eom, 2019, Chem. Commun., 55, 14609, 10.1039/C9CC07061C
Huang, 2020, Adv. Funct. Mater., 30, 10.1002/adfm.201910375
Jin, 2019, Adv. Energy Mater., 9, 10.1002/aenm.201902938
Milroy, 2016, Adv. Mater., 28, 9744, 10.1002/adma.201601665
Liu, 2019, Adv. Funct. Mater., 29
Liu, 2019, RSC Adv., 9, 40471, 10.1039/C9RA08238G
Cheng, 2017, Ionics, 23, 2251, 10.1007/s11581-017-2087-9
Fu, 2019, J. Mater. Chem., 7, 1835, 10.1039/C8TA11384J
Yi, 2020, ACS Appl. Mater. Interfaces, 12, 29316
Yi, 2018, J. Mater. Chem., 6, 18660, 10.1039/C8TA07194B
Wang, 2015, ACS Appl. Mater. Interfaces, 7, 25002, 10.1021/acsami.5b08887
Guo, 2020, Adv. Funct. Mater., 30, 10.1002/adfm.201907931
Lopez, 2019, Nat Rev Mater, 4, 312, 10.1038/s41578-019-0103-6
Pan, 2016, RSC Adv., 6, 40650, 10.1039/C6RA04230A
Tang, 2017, Macromol. Mater. Eng., 302, 10.1002/mame.201700122
Long, 2018, Adv. Funct. Mater., 28, 10.1002/adfm.201804416
Zhao, 2018, Adv. Sci., 5
Chen, 2018, Adv. Energy Mater., 8, 1702889, 10.1002/aenm.201702889
Pan, 2018, J. Am. Chem. Soc., 140, 4218, 10.1021/jacs.8b00814
Yan, 2018, Sustainable Energy & Fuels, 2, 1574, 10.1039/C8SE00167G
Liu, 2018, J. Mater. Chem., 6, 7382, 10.1039/C8TA01138A
Liu, 2017, Energy Environ. Sci., 10, 750, 10.1039/C6EE03033E
Gao, 2017, Electrochim. Acta, 232, 414, 10.1016/j.electacta.2017.02.160
Qin, 2019, J. Mater. Chem., 7, 6773, 10.1039/C8TA11353J
Kwok, 2019, ACS Appl. Mater. Interfaces, 11, 22481, 10.1021/acsami.9b06456
Park, 2015, Energy Environ. Sci., 8, 2389, 10.1039/C5EE01809A
Lacey, 2014, J. Phys. Chem. C, 118, 25890, 10.1021/jp508137m
Jeon, 2019, Acs Sustain Chem Eng, 7, 17580, 10.1021/acssuschemeng.9b01924
Xu, 2017, Nano Lett., 17, 538, 10.1021/acs.nanolett.6b04610
Yan, 2018, Energy Environ. Sci., 11, 1204, 10.1039/C8EE00133B
Jia, 2019, ACS Appl. Mater. Interfaces, 11, 3087, 10.1021/acsami.8b19593
Ansari, 2019, Adv. Energy Mater., 9, 10.1002/aenm.201802213
Wang, 2020, Energy Storage Mater., 28, 375, 10.1016/j.ensm.2020.03.023
Xin, 2012, J. Am. Chem. Soc., 134, 18510, 10.1021/ja308170k
Suo, 2013, Nat. Commun., 4, 10.1038/ncomms2513
Rana, 2019, ACS Cent. Sci., 5, 1946, 10.1021/acscentsci.9b01005
Seh, 2013, Chem. Sci., 4, 3673, 10.1039/c3sc51476e
Lacey, 2014, J. Power Sources, 264, 8, 10.1016/j.jpowsour.2014.04.090
Li, 2015, J. Power Sources, 294, 187, 10.1016/j.jpowsour.2015.06.083
Xu, 2017, Nanomater. Energy, 31, 568, 10.1016/j.nanoen.2016.12.002
Liao, 2020, ACS Omega, 5, 8272, 10.1021/acsomega.0c00666
Liao, 2018, J. Phys. Chem. C, 122, 25917, 10.1021/acs.jpcc.8b09378
He, 2011, J. Phys. Chem. C, 115, 15703, 10.1021/jp2043416
Liu, 2018, J. Mater. Chem., 6, 7382, 10.1039/C8TA01138A
Li, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201500878
Qi, 2019, ACS Appl. Mater. Interfaces, 11, 47956, 10.1021/acsami.9b17458
Chen, 2017, Adv. Mater., 29
Chen, 2018, Adv. Energy Mater., 8
Jiao, 2017, Nanoscale Research Letters, 12
Pang, 2017, Adv. Energy Mater., 7, 10.1002/aenm.201601630
Zhu, 2018, Adv. Funct. Mater., 28, 10.1002/adfm.201705015
Yan, 2018, J. Mater. Chem., 6, 14315, 10.1039/C8TA04450C
Ye, 2020, Chin. Chem. Lett., 31, 570, 10.1016/j.cclet.2019.04.047
Zeng, 2015, ACS Appl. Mater. Interfaces, 7, 26257, 10.1021/acsami.5b08537
Ling, 2017, ACS Appl. Mater. Interfaces, 9, 31741, 10.1021/acsami.7b06485
Li, 2017, Nat. Commun., 8, 2277, 10.1038/s41467-017-02410-6
Su, 2017, ACS Energy Letters, 2, 2591, 10.1021/acsenergylett.7b00779
Liao, 2018, Electrochim. Acta, 259, 626, 10.1016/j.electacta.2017.10.194
Zhou, 2018, ACS Cent. Sci., 4, 260, 10.1021/acscentsci.7b00569
Liao, 2019, ACS Appl. Energy Mater., 2, 6732, 10.1021/acsaem.9b01214
Frischmann, 2016, Chem. Mater., 28, 7414, 10.1021/acs.chemmater.6b03013
Hernández, 2017, Materials today energy, 6, 264, 10.1016/j.mtener.2017.11.001
Chen, 2016, Nanomater. Energy, 26, 43, 10.1016/j.nanoen.2016.04.052
Liu, 2018, Appl Sci-Basel, 8
Duan, 2020, Sustain Energ Fuels, 4, 2760, 10.1039/D0SE00309C
Vizintin, 2018, Chem. Mater., 30, 5444, 10.1021/acs.chemmater.8b02357
Guo, 2020, Chemsuschem, 13, 819, 10.1002/cssc.201902772
Sun, 2017, Electrochim. Acta, 235, 399, 10.1016/j.electacta.2017.03.023
Bhargav, 2020, Joule, 4, 285, 10.1016/j.joule.2020.01.001
Yuan, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201802107
Liu, 2018, J. Power Sources, 396, 19, 10.1016/j.jpowsour.2018.05.096
Lacey, 2017, Chemsuschem, 10, 2758, 10.1002/cssc.201700743
Luo, 2019, Chemsuschem, 12, 1591, 10.1002/cssc.201802186
Ai, 2015, Nanomater. Energy, 16, 28, 10.1016/j.nanoen.2015.05.036
Li, 2013, Nano Lett., 13, 5534, 10.1021/nl403130h
Zhu, 2018, Adv. Mater. Interfaces, 5, 10.1002/admi.201701598
Liu, 2018, Electrochim. Acta, 271, 67, 10.1016/j.electacta.2018.03.131
Gao, 2015, J. Mater. Chem., 3, 7215, 10.1039/C5TA00379B
Manthiram, 2015, Adv. Mater., 27, 1980, 10.1002/adma.201405115
Hong, 2016, J. Power Sources, 324, 455, 10.1016/j.jpowsour.2016.04.114
Han, 2012, Energy Environ. Sci., 5, 9014, 10.1039/c2ee22292b
Sun, 2008, Electrochim. Acta, 53, 7084, 10.1016/j.electacta.2008.05.022
Wang, 2019, J. Phys. Chem. C, 123, 250, 10.1021/acs.jpcc.8b10736
Bhattacharya, 2016, Nanomater. Energy, 19, 176, 10.1016/j.nanoen.2015.11.012
Conder, 2017, Electrochim. Acta, 244, 61, 10.1016/j.electacta.2017.05.041
Kim, 2016, Acs Energy Letters, 1, 136, 10.1021/acsenergylett.6b00104
Hu, 2020, Electrochim. Acta, 336, 10.1016/j.electacta.2020.135693
Hu, 2019, J. Power Sources, 416, 125, 10.1016/j.jpowsour.2019.01.068
Lee, 2010, J. Power Sources, 195, 6049, 10.1016/j.jpowsour.2009.12.101
Han, 2012, Energy Environ. Sci., 5, 9014, 10.1039/c2ee22292b
Komaba, 2012, J. Phys. Chem. C, 116, 1380, 10.1021/jp204817h
Yabuuchi, 2011, Adv. Energy Mater., 1, 759, 10.1002/aenm.201100236
Han, 2015, Phys. Chem. Chem. Phys., 17, 3783, 10.1039/C4CP04939J
Pan, 2015, RSC Adv., 5, 13709, 10.1039/C4RA15303K
Peled, 2017, J. Electrochem. Soc., 164, A5001, 10.1149/2.0161701jes
Zhao, 2019, Int. J. Electrochem. Sci., 14, 8772, 10.20964/2019.09.11
Lu, 2016, Electrochem. Commun., 72, 79, 10.1016/j.elecom.2016.09.004
Zhu, 2016, J. Appl. Electrochem., 46, 725, 10.1007/s10800-016-0957-x
Ling, 2017, Nanomater. Energy, 38, 82, 10.1016/j.nanoen.2017.05.020
Wu, 2017, Adv. Energy Mater., 7, 10.1002/aenm.201601591
Li, 2017, Nat. Commun., 8, 1, 10.1038/s41467-016-0009-6
Yang, 2018, ACS Appl. Mater. Interfaces, 10, 13519, 10.1021/acsami.8b01163
Han, 2019, ACS Appl. Mater. Interfaces, 11, 17393, 10.1021/acsami.9b02399
Guo, 2020, Chem. Eng. J., 388
Zheng, 2020, Chem. Eng. J., 389
Han, 2019, Energy Storage Mater., 17, 317, 10.1016/j.ensm.2018.11.002
Zeng, 2019, Energy Storage Mater., 18, 190, 10.1016/j.ensm.2018.09.018
Yi, 2019, Energy Storage Mater., 21, 61, 10.1016/j.ensm.2018.12.009
Kim, 2020, Adv. Funct. Mater., 30, 10.1002/adfm.201907680
