Leibniz Algebras Admitting a Multiplicative Basis

Antonio J. Calderón Martín1
1Department of Mathematics, Faculty of Sciences, University of Cádiz, Puerto Real, Cádiz, Spain

Tóm tắt

In the literature, many of the descriptions of different classes of Leibniz algebras $$(L, [\cdot , \cdot ])$$ have been made by giving the multiplication table on the elements of a basis $${{\mathcal {B}}}=\{v_{k}\}_{k \in K}$$ of L, in such a way that for any $$i,j \in K$$ we have that $$[v_i,v_j] = \lambda _{i,j} [v_j,v_i]\in {{\mathbb {F}}} v_k$$ for some $$k \in K$$ , where $${{\mathbb {F}}}$$ denotes the base field and $$\lambda _{i,j} \in {{\mathbb {F}}}$$ . In order to give an unifying viewpoint of all these classes of algebras, we introduce the more general category of Leibniz algebras admitting a multiplicative basis and study its structure. We show that if a Leibniz algebra L admits a multiplicative basis, then it is the direct sum $$L=\bigoplus \nolimits _{\alpha }{{{\mathcal {I}}}}_{\alpha }$$ with any $${{\mathcal {I}}}_{\alpha }$$ a well-described ideal of L admitting a multiplicative basis inherited from $${\mathcal {B}}$$ . Also the $${{\mathcal {B}}}$$ -simplicity of L is characterized in terms of the multiplicative basis.

Tài liệu tham khảo

Abdykassymova, S., Dzhumaldil’daev, A.: Leibniz algebras in characteristic \(p\). Comptes Rendus Acad. Sci. Paris Ser. I Math. 332(12), 1047–1052 (2001) Albeverio, S., Ayupov, Sh.A., Omirov, B.A.: On nilpotent and simple Leibniz algebras. Commun. Algebra 33(1), 159–172 (2005) Albeverio, S., Ayupov, ShA, Omirov, B.A., Khudoyberdiyev, AKh: \(n\)-Dimensional filiform Leibniz algebras of length \((n-1)\) and their derivations. J. Algebra 319(6), 2471–2488 (2008) Albeverio, S., Omirov, B.A., Rakhimov, I.S.: Varieties of nilpotent complex Leibniz algebras of dimension less than five. Commun. Algebra 33(5), 1575–1585 (2005) Ayupov, ShA, Omirov, B.A.: On some classes of nilpotent Leibniz algebras. Sib. Math. J. 42(1), 18–29 (2001) Bloh, A.: On a generalization of the concept of Lie algebra. Dokl. Akad. Nauk SSSR 165, 471–473 (1965) Bloh, A.: Cartan–Eilenberg homology theory for a generalized class of Lie algebras. Dokl. Akad. Nauk SSSR 175, 266–268 (1967). Translated as Sov. Math. Dokl. 8, 824–826 (1967) Bloh, A.: A certain generalization of the concept of Lie algebra. Algebra and number theory. Moskov. Gos. Ped. Inst. Ucen. Zap. No. 375, 9–20 (1971) Cabezas, J.M., Camacho, L.M., Rodriguez, I.M.: On filiform and 2-filiform Leibniz algebras of maximum length. J. Lie Theory 18(2), 335–350 (2008) Calderón, A.J.: On the structure of graded Lie algebras. J. Math. Phys. 50(10), 103513, 8 (2009) Calderón, A.J., Sánchez, J.M.: On the structure of graded Lie superalgebras. Mod. Phys. Lett. A 27(25), 1250142 (2012) Calderón, A.J., Sánchez, J.M.: Split Leibniz algebras. Linear Algebra Appl. 436(6), 1648–1660 (2012) Calderón, A.J., Sánchez, J.M.: On the structure of split Leibniz superalgebras. Linear Algebra Appl. 438, 4709–40725 (2013) Camacho, L.M., Casas, J.M., Gómez, J.R., Ladra, M., Omirov, B.A.: On nilpotent Leibniz n-algebras. J. Algebra Appl. 11(3), 1250062, 17 (2012) Camacho, L.M., Cañete, E.M., Gómez, J.R., Omirov, B.A.: 3-filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebras. Linear Multilinear Algebra 59(9), 1039–1058 (2011) Camacho, L.M., Cañete, E.M., Gómez, J.R., Redjepov, ShB: Leibniz algebras of nilindex \(n-3\) with characteristic sequence \((n-3,2,1)\). Linear Algebra Appl. 438(4), 1832–1851 (2013) Camacho, L.M., Gomez, J.R., González, A.J., Omirov, B.A.: Naturally graded 2-filiform Leibniz algebras. Commun. Algebra 38, 3671–3685 (2010) Camacho, L.M., Gómez, J.R., González, A.J., Omirov, B.A.: The classification of naturally graded p-filiform Leibniz algebras. Commun. Algebra 39(1), 153–168 (2011) Camacho, L.M., Gómez, J.R., Omirov, B.A.: Naturally graded \((n-3)\)-filiform Leibniz algebras. Linear Algebra Appl. 433(2), 433–446 (2010) Casas, J.M., Khudoyberdiyev, AKh, Ladra, M., Omirov, B.A.: On the degenerations of solvable Leibniz algebras. Linear Algebra Appl. 439(2), 472–487 (2013) Casas, J.M., Ladra, M., Omirov, B.A., Karimjanov, I.A.: Classification of solvable Leibniz algebras with null-filiform nilradical. Linear Multilinear Algebra 61(6), 758–774 (2013) Casas, J.M., Ladra, M., Omirov, B.A., Karimjanov, I.A.: Classification of solvable Leibniz algebras with naturally graded filiform nilradical. Linear Algebra Appl. 438(7), 2973–3000 (2013) Cañete, E.M., Khudoyberdiyev, AKh: The classification of 4-dimensional Leibniz algebras. Linear Algebra Appl. 439(1), 273–288 (2013) Fialowski, A., Khudoyberdiyev, AKh, Omirov, B.A.: A characterization of nilpotent Leibniz algebras. Algebras Represent. Theory 16(5), 1489–1505 (2013) Ladra, M., Omirov, B.A., Rozikov, U.A.: Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of \(x^q=a\). Cent. Eur. J. Math. 11(6), 1083–1093 (2013) Liu, D., Hu, N.: Leibniz algebras graded by finite root systems. Algebra Colloq. 17(3), 431–446 (2010) Loday, J.L.: Une version non commutative des algébres de Lie: les algébres de Leibniz. L’Ens. Math. 39, 269–293 (1993) Omirov, B.A., Rakhimov, I.S., Turdibaev, R.M.: On description of Leibniz algebras corresponding to \({sl}_2\). Algebras Represent. Theory 16, 1507–1519 (2013) Rakhimov, I.S., Al-Nashri, A.-H.: On derivations of some classes of Leibniz algebras. J. Gen. Lie Theory Appl. 6, Article ID G120501 (2012) Rakhimov, I.S., Atan Kamel, A.M.: On contractions and invariants of Leibniz algebras. Bull. Malays. Math. Sci. Soc. (2) 35(2A), 557–565 (2012) Rakhimov, I.S., Hassan, M.A.: On low-dimensional filiform Leibniz algebras and their invariants. Bull. Malays. Math. Sci. Soc. (2) 34(3), 475–485 (2011) Rakhimov, I.S., Sozan, J.: Description of nine dimensional complex filiform Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras. Int. J. Algebra 5, 271–280 (2009)