A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays
Tài liệu tham khảo
Aboudolas, 2013, Perimeter and boundary flow control in multi-reservoir heterogeneous networks, Transp. Res. Part B Methodol., 55, 265, 10.1016/j.trb.2013.07.003
Aghamohammadi, 2018, Dynamic traffic assignment using the macroscopic fundamental diagram: a review of vehicular and pedestrian flow models, Transp. Res. Part B Methodol., 10.1016/j.trb.2018.10.017
Amirgholy, 2017, Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: user equilibrium, system optimum, and pricing strategies, Transp. Res. Part B Methodol., 104, 215, 10.1016/j.trb.2017.07.006
Ampountolas, 2017, Macroscopic modelling and robust control of bi-modal multi-region urban road networks, Transp. Res. Part B Methodol., 104, 616, 10.1016/j.trb.2017.05.007
Arnott, 2013, A bathtub model of downtown traffic congestion, J. Urban Econ., 76, 110, 10.1016/j.jue.2013.01.001
Arnott, 2018, Solving for equilibrium in the basic bathtub model, Transp. Res. Part B Methodol., 109, 150, 10.1016/j.trb.2017.12.003
Arnott, 2016, Equilibrium traffic dynamics in a bathtub model: a special case, Econ. Transp., 7, 38, 10.1016/j.ecotra.2016.11.001
Buisson, 2009, Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams, Transp. Res. Rec., 127, 10.3141/2124-12
Carey, 2014, Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities, Transp. Res. Part B Methodol., 65, 90, 10.1016/j.trb.2014.04.002
Carey, 2002, Behaviour of a whole-link travel time model used in dynamic traffic assignment, Transp. Res. Part B Methodol., 36, 83, 10.1016/S0191-2615(00)00039-4
Daganzo, 1995, Properties of link travel time functions under dynamic loads, Transp. Res. Part B Methodol., 29, 95, 10.1016/0191-2615(94)00026-V
Daganzo, 2007, Urban gridlock: macroscopic modeling and mitigation approaches, Transp. Res. Part B Methodol., 41, 49, 10.1016/j.trb.2006.03.001
Daganzo, 2008, An analytical approximation for the macroscopic fundamental diagram of urban traffic, Transp. Res. Part B Methodol., 42, 771, 10.1016/j.trb.2008.06.008
Fosgerau, 2015, Congestion in the bathtub, Econ. Transp., 4, 241, 10.1016/j.ecotra.2015.08.001
Friesz, 1993, A variational inequality formulation of the dynamic network user equilibrium problem, Oper. Res., 41, 179, 10.1287/opre.41.1.179
Friesz, 2001, Dynamic network user equilibrium with state-dependent time lags, Netw. Spatial Econ., 1, 319, 10.1023/A:1012896228490
Friesz, 2019, The mathematical foundations of dynamic user equilibrium, Transp. Res. Part B Methodol, 126, 309, 10.1016/j.trb.2018.08.015
Friesz, 2006, Solving the dynamic network user equilibrium problem with state-dependent time shifts, Transp. Res. Part B Methodol., 40, 207, 10.1016/j.trb.2005.03.002
Geroliminis, 2008, Existence of urban-scale macroscopic fundamental diagrams: some experimental findings, Transp. Res. Part B Methodol., 42, 759, 10.1016/j.trb.2008.02.002
Geroliminis, 2013, Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a model predictive approach, IEEE Trans. Intell. Transp. Syst., 14, 348, 10.1109/TITS.2012.2216877
Geroliminis, 2011, Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks, Transp. Res. Part A Policy Pract., 45, 966, 10.1016/j.tra.2011.04.004
Haddad, 2017, Optimal coupled and decoupled perimeter control in one-region cities, Control Eng. Pract., 61, 134, 10.1016/j.conengprac.2017.01.010
Haddad, 2017, Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics, Transp. Res. Part B Methodol., 96, 1, 10.1016/j.trb.2016.10.016
Haddad, 2016, Adaptive perimeter traffic control of urban road networks based on MFD model with time delays, Int. J. Robust Nonlinear Control, 26, 1267, 10.1002/rnc.3502
Haddad, 2013, Cooperative traffic control of a mixed network with two urban regions and a freeway, Transp. Res. Part B Methodol., 54, 17, 10.1016/j.trb.2013.03.007
Haddad, 2019, Adaptive perimeter control for multi-region accumulation-based models with state delays, Transp. Res. Part B Methodol
Keyvan-Ekbatani, 2012, Exploiting the fundamental diagram of urban networks for feedback-based gating, Transp. Res. Part B Methodol., 46, 1393, 10.1016/j.trb.2012.06.008
Keyvan-Ekbatani, 2015, Controller design for gating traffic control in presence of time-delay in urban road networks, Transp. Res. Part C Emerg. Technol., 59, 308, 10.1016/j.trc.2015.04.031
Keyvan-Ekbatani, 2015, Multiple concentric gating traffic control in large-scale urban networks, IEEE Trans. Intell. Transp. Syst., 16, 2141, 10.1109/TITS.2015.2399303
Knoop, 2012, Routing strategies based on macroscopic fundamental diagram, Transp. Res. Rec., 1, 10.3141/2315-01
Kouvelas, 2017, Enhancing model-based feedback perimeter control with data-driven online adaptive optimization, Transp. Res. Part B Methodol., 96, 26, 10.1016/j.trb.2016.10.011
Lamotte, 2018, The morning commute in urban areas with heterogeneous trip lengths, Transp. Res. Part B Methodol., 117, 794, 10.1016/j.trb.2017.08.023
Laval, 2015, Stochastic approximations for the macroscopic fundamental diagram of urban networks, Transp. Res. Part B Methodol., 81, 904, 10.1016/j.trb.2015.09.002
Laval, 2018, Minimal parameter formulations of the dynamic user equilibrium using macroscopic urban models: freeway vs city streets revisited, Transp. Res. Part B Methodol., 117, 676, 10.1016/j.trb.2017.08.027
Mahmassani, 2013, Urban network gridlock: theory, characteristics, and dynamics, Transp. Res. Part C Emerg. Technol., 36, 480, 10.1016/j.trc.2013.07.002
Mariotte, 2019, Flow exchanges in multi-reservoir systems with spillbacks, Transp. Res. Part B Methodol., 122, 327, 10.1016/j.trb.2019.02.014
Mariotte, 2017, Macroscopic urban dynamics: analytical and numerical comparisons of existing models, Transp. Res. Part B Methodol., 101, 245, 10.1016/j.trb.2017.04.002
Mirkin, 2016, Tracking with asymptotic sliding mode and adaptive input delay effect compensation of nonlinearly perturbed delayed systems applied to traffic feedback control, Int. J. Control, 1
Nie, 2005, Delay-function-based link models: their properties and computational issues, Transp. Res. Part B Methodol., 39, 729, 10.1016/j.trb.2004.10.002
Ramezani, 2018, Dynamic modeling and control of taxi services in large-scale urban networks: a macroscopic approach, Transp. Res. Part C Emerg. Technol., 94, 203, 10.1016/j.trc.2017.08.011
Saberi, 2014, Estimating network fundamental diagram using three-dimensional vehicle trajectories: extending Edie’s definitions of traffic flow variables to networks, Transp. Res. Rec., 12, 10.3141/2422-02
Xu, 1999, Advances in the continuous dynamic network loading problem, Transp. Sci., 33, 341, 10.1287/trsc.33.4.341
Yang, 2005
Yildirimoglu, 2014, Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams, Transp. Res. Part B Methodol., 70, 186, 10.1016/j.trb.2014.09.002
Yildirimoglu, 2015, Equilibrium analysis and route guidance in large-scale networks with MFD dynamics, Transp. Res. Part C Emerg. Technol., 59, 404, 10.1016/j.trc.2015.05.009
Yildirimoglu, 2018, Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance, Transp. Res. Part B Methodol., 118, 106, 10.1016/j.trb.2018.10.007
Zheng, 2016, Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing, Transp. Res. Part B Methodol., 83, 36, 10.1016/j.trb.2015.10.008
Zhong, 2011
Zhong, 2018, Robust perimeter control for two urban regions with macroscopic fundamental diagrams: a control-Lyapunov function approach, Transp. Res. Part B Methodol., 117, 687, 10.1016/j.trb.2017.09.008
Zhong, 2018, Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: a control systems perspective, Transp. Res. Part B Methodol., 111, 327, 10.1016/j.trb.2018.02.016
Zhong, 2011, Dynamic user equilibrium with side constraints for a traffic network: theoretical development and numerical solution algorithm, Transp. Res. Part B Methodol., 45, 1035, 10.1016/j.trb.2011.05.004
Zhong, 2012, Dynamic marginal cost, access control, and pollution charge: a comparison of bottleneck and whole link models, J. Adv. Transp., 46, 191, 10.1002/atr.195
Zhu, 2000, On the existence of solutions to the dynamic user equilibrium problem, Transp. Sci., 34, 402, 10.1287/trsc.34.4.402.12322