A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays

Transportation Research Part B: Methodological - Tập 131 - Trang 1-25 - 2020
Y.P. Huang1,2, J.H. Xiong1, A. Sumalee2, N. Zheng3, W.H.K. Lam2, Z.B. He4, R.X. Zhong1,2
1Guangdong Key Laboratory of Intelligent Transportation Systems, School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China
2Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
3Institute of Transport Studies, Department of Civil Engineering, Monash University, Australia
4College of Metropolitan Transportation, Beijing University of Technology, Beijing, China

Tài liệu tham khảo

Aboudolas, 2013, Perimeter and boundary flow control in multi-reservoir heterogeneous networks, Transp. Res. Part B Methodol., 55, 265, 10.1016/j.trb.2013.07.003 Aghamohammadi, 2018, Dynamic traffic assignment using the macroscopic fundamental diagram: a review of vehicular and pedestrian flow models, Transp. Res. Part B Methodol., 10.1016/j.trb.2018.10.017 Amirgholy, 2017, Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: user equilibrium, system optimum, and pricing strategies, Transp. Res. Part B Methodol., 104, 215, 10.1016/j.trb.2017.07.006 Ampountolas, 2017, Macroscopic modelling and robust control of bi-modal multi-region urban road networks, Transp. Res. Part B Methodol., 104, 616, 10.1016/j.trb.2017.05.007 Arnott, 2013, A bathtub model of downtown traffic congestion, J. Urban Econ., 76, 110, 10.1016/j.jue.2013.01.001 Arnott, 2018, Solving for equilibrium in the basic bathtub model, Transp. Res. Part B Methodol., 109, 150, 10.1016/j.trb.2017.12.003 Arnott, 2016, Equilibrium traffic dynamics in a bathtub model: a special case, Econ. Transp., 7, 38, 10.1016/j.ecotra.2016.11.001 Buisson, 2009, Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams, Transp. Res. Rec., 127, 10.3141/2124-12 Carey, 2014, Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities, Transp. Res. Part B Methodol., 65, 90, 10.1016/j.trb.2014.04.002 Carey, 2002, Behaviour of a whole-link travel time model used in dynamic traffic assignment, Transp. Res. Part B Methodol., 36, 83, 10.1016/S0191-2615(00)00039-4 Daganzo, 1995, Properties of link travel time functions under dynamic loads, Transp. Res. Part B Methodol., 29, 95, 10.1016/0191-2615(94)00026-V Daganzo, 2007, Urban gridlock: macroscopic modeling and mitigation approaches, Transp. Res. Part B Methodol., 41, 49, 10.1016/j.trb.2006.03.001 Daganzo, 2008, An analytical approximation for the macroscopic fundamental diagram of urban traffic, Transp. Res. Part B Methodol., 42, 771, 10.1016/j.trb.2008.06.008 Fosgerau, 2015, Congestion in the bathtub, Econ. Transp., 4, 241, 10.1016/j.ecotra.2015.08.001 Friesz, 1993, A variational inequality formulation of the dynamic network user equilibrium problem, Oper. Res., 41, 179, 10.1287/opre.41.1.179 Friesz, 2001, Dynamic network user equilibrium with state-dependent time lags, Netw. Spatial Econ., 1, 319, 10.1023/A:1012896228490 Friesz, 2019, The mathematical foundations of dynamic user equilibrium, Transp. Res. Part B Methodol, 126, 309, 10.1016/j.trb.2018.08.015 Friesz, 2006, Solving the dynamic network user equilibrium problem with state-dependent time shifts, Transp. Res. Part B Methodol., 40, 207, 10.1016/j.trb.2005.03.002 Geroliminis, 2008, Existence of urban-scale macroscopic fundamental diagrams: some experimental findings, Transp. Res. Part B Methodol., 42, 759, 10.1016/j.trb.2008.02.002 Geroliminis, 2013, Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a model predictive approach, IEEE Trans. Intell. Transp. Syst., 14, 348, 10.1109/TITS.2012.2216877 Geroliminis, 2011, Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks, Transp. Res. Part A Policy Pract., 45, 966, 10.1016/j.tra.2011.04.004 Haddad, 2017, Optimal coupled and decoupled perimeter control in one-region cities, Control Eng. Pract., 61, 134, 10.1016/j.conengprac.2017.01.010 Haddad, 2017, Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics, Transp. Res. Part B Methodol., 96, 1, 10.1016/j.trb.2016.10.016 Haddad, 2016, Adaptive perimeter traffic control of urban road networks based on MFD model with time delays, Int. J. Robust Nonlinear Control, 26, 1267, 10.1002/rnc.3502 Haddad, 2013, Cooperative traffic control of a mixed network with two urban regions and a freeway, Transp. Res. Part B Methodol., 54, 17, 10.1016/j.trb.2013.03.007 Haddad, 2019, Adaptive perimeter control for multi-region accumulation-based models with state delays, Transp. Res. Part B Methodol Keyvan-Ekbatani, 2012, Exploiting the fundamental diagram of urban networks for feedback-based gating, Transp. Res. Part B Methodol., 46, 1393, 10.1016/j.trb.2012.06.008 Keyvan-Ekbatani, 2015, Controller design for gating traffic control in presence of time-delay in urban road networks, Transp. Res. Part C Emerg. Technol., 59, 308, 10.1016/j.trc.2015.04.031 Keyvan-Ekbatani, 2015, Multiple concentric gating traffic control in large-scale urban networks, IEEE Trans. Intell. Transp. Syst., 16, 2141, 10.1109/TITS.2015.2399303 Knoop, 2012, Routing strategies based on macroscopic fundamental diagram, Transp. Res. Rec., 1, 10.3141/2315-01 Kouvelas, 2017, Enhancing model-based feedback perimeter control with data-driven online adaptive optimization, Transp. Res. Part B Methodol., 96, 26, 10.1016/j.trb.2016.10.011 Lamotte, 2018, The morning commute in urban areas with heterogeneous trip lengths, Transp. Res. Part B Methodol., 117, 794, 10.1016/j.trb.2017.08.023 Laval, 2015, Stochastic approximations for the macroscopic fundamental diagram of urban networks, Transp. Res. Part B Methodol., 81, 904, 10.1016/j.trb.2015.09.002 Laval, 2018, Minimal parameter formulations of the dynamic user equilibrium using macroscopic urban models: freeway vs city streets revisited, Transp. Res. Part B Methodol., 117, 676, 10.1016/j.trb.2017.08.027 Mahmassani, 2013, Urban network gridlock: theory, characteristics, and dynamics, Transp. Res. Part C Emerg. Technol., 36, 480, 10.1016/j.trc.2013.07.002 Mariotte, 2019, Flow exchanges in multi-reservoir systems with spillbacks, Transp. Res. Part B Methodol., 122, 327, 10.1016/j.trb.2019.02.014 Mariotte, 2017, Macroscopic urban dynamics: analytical and numerical comparisons of existing models, Transp. Res. Part B Methodol., 101, 245, 10.1016/j.trb.2017.04.002 Mirkin, 2016, Tracking with asymptotic sliding mode and adaptive input delay effect compensation of nonlinearly perturbed delayed systems applied to traffic feedback control, Int. J. Control, 1 Nie, 2005, Delay-function-based link models: their properties and computational issues, Transp. Res. Part B Methodol., 39, 729, 10.1016/j.trb.2004.10.002 Ramezani, 2018, Dynamic modeling and control of taxi services in large-scale urban networks: a macroscopic approach, Transp. Res. Part C Emerg. Technol., 94, 203, 10.1016/j.trc.2017.08.011 Saberi, 2014, Estimating network fundamental diagram using three-dimensional vehicle trajectories: extending Edie’s definitions of traffic flow variables to networks, Transp. Res. Rec., 12, 10.3141/2422-02 Xu, 1999, Advances in the continuous dynamic network loading problem, Transp. Sci., 33, 341, 10.1287/trsc.33.4.341 Yang, 2005 Yildirimoglu, 2014, Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams, Transp. Res. Part B Methodol., 70, 186, 10.1016/j.trb.2014.09.002 Yildirimoglu, 2015, Equilibrium analysis and route guidance in large-scale networks with MFD dynamics, Transp. Res. Part C Emerg. Technol., 59, 404, 10.1016/j.trc.2015.05.009 Yildirimoglu, 2018, Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance, Transp. Res. Part B Methodol., 118, 106, 10.1016/j.trb.2018.10.007 Zheng, 2016, Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing, Transp. Res. Part B Methodol., 83, 36, 10.1016/j.trb.2015.10.008 Zhong, 2011 Zhong, 2018, Robust perimeter control for two urban regions with macroscopic fundamental diagrams: a control-Lyapunov function approach, Transp. Res. Part B Methodol., 117, 687, 10.1016/j.trb.2017.09.008 Zhong, 2018, Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: a control systems perspective, Transp. Res. Part B Methodol., 111, 327, 10.1016/j.trb.2018.02.016 Zhong, 2011, Dynamic user equilibrium with side constraints for a traffic network: theoretical development and numerical solution algorithm, Transp. Res. Part B Methodol., 45, 1035, 10.1016/j.trb.2011.05.004 Zhong, 2012, Dynamic marginal cost, access control, and pollution charge: a comparison of bottleneck and whole link models, J. Adv. Transp., 46, 191, 10.1002/atr.195 Zhu, 2000, On the existence of solutions to the dynamic user equilibrium problem, Transp. Sci., 34, 402, 10.1287/trsc.34.4.402.12322