Rigorous design of multiphase reactors: Identification of optimal conditions for mass transfer limited reactions
Tài liệu tham khảo
Hildebrandt, 1990, Geometry of the attainable region generated by reaction and mixing – with and without constraints, Ind. Eng. Chem. Res., 29, 49, 10.1021/ie00097a009
Feinberg, 1997, Optimal reactor design from a geometric viewpoint – I. Universal properties of the attainable region, Chem. Eng. Sci., 52, 1637, 10.1016/S0009-2509(96)00471-X
Achenie, 1990, A superstructure based approach to chemical reactor network synthesis, Comput. Chem. Eng., 14, 23, 10.1016/0098-1354(90)87003-8
Kokossis, 1994, Optimization of complex reactor networks. 2. Nonisothermal operation, Chem. Eng. Sci., 49, 1037, 10.1016/0009-2509(94)80010-3
Hillestad, 2005, A systematic generation of reactor designs. II. Non-isothermal conditions, Comput. Chem. Eng., 29, 1101, 10.1016/j.compchemeng.2004.11.009
Krishna, 1994, Strategies for multiphase reactor selection, Chem. Eng. Sci., 49, 4029, 10.1016/S0009-2509(05)80005-3
Mehta, 1997, Development of novel multiphase reactors using a systematic design framework, Comput. Chem. Eng., 21, S325, 10.1016/S0098-1354(97)87522-9
Mehta, 2000, Nonisothermal synthesis of homogeneous and multiphase reactor networks, AlChE J., 46, 2256, 10.1002/aic.690461117
Kelkar, 2000, Screening multiphase reactors for nonisothermal multiple reactions, AlChE J., 46, 389, 10.1002/aic.690460217
Peschel, 2010, Methodology for the design of optimal chemical reactors based on the concept of elementary process functions, Ind. Eng. Chem. Res., 49, 10535, 10.1021/ie100476q
Peschel, 2012, Design of optimal multiphase reactors exemplified on the hydroformylation of long chain alkenes, Chem. Eng. J., 188, 126, 10.1016/j.cej.2012.01.123
Freund, 2008, Towards a methodology for the systematic analysis and design of efficient chemical processes. Part 1. From unit operations to elementary process functions, Chem. Eng. Process., 47, 2051, 10.1016/j.cep.2008.07.011
Freund, 2011, Model-based reactor design based on the optimal reaction route [Modellgestützter Reaktorentwurf auf Basis der optimalen Reaktionsführung], Chemie-Ingenieur-Technik, 83, 420, 10.1002/cite.201000195
Peschel, 2011, Analysis and optimal design of an ethylene oxide reactor, Chem. Eng. Sci., 66, 6453, 10.1016/j.ces.2011.08.054
Peschel, 2012, Optimal reaction concept and plant wide optimization of the ethylene oxide process, Chem. Eng. J., 207–208, 656, 10.1016/j.cej.2012.07.029
Hentschel, 2014, Model-based determination of the optimal reaction route for integrated multiphase processes [Modellbasierte ermittlung der optimalen reaktionsführung für integrierte mehrphasenprozesse], Chemie-Ingenieur-Technik, 86, 1080, 10.1002/cite.201400006
Hentschel, 2014, Model-based prediction of optimal conditions for 1-octene hydroformylation, Chem. Eng. Sci., 115, 58, 10.1016/j.ces.2013.03.051
Hentschel, 2014, Simultaneous design of the optimal reaction and process concept for multiphase systems, Chem. Eng. Sci., 115, 69, 10.1016/j.ces.2013.09.046
Hentschel, 2015, Model-based identification and experimental validation of the optimal reaction route for the hydroformylation of 1-dodecene, Ind. Eng. Chem. Res., 54, 1755, 10.1021/ie504388t
Yildirim, 2012, Reactive absorption in chemical process industry: a review on current activities, Chem. Eng. J., 213, 371, 10.1016/j.cej.2012.09.121
Kenig, 2003, Rigorous modeling of reactive absorption processes, Chem. Eng. Technol., 26, 631, 10.1002/ceat.200390096
Hiwale, 2012, Model building methodology for multiphase reaction systems – modeling of CO2 absorption in monoethanolamine for laminar jet absorbers and packing beds, Ind. Eng. Chem. Res., 51, 4328, 10.1021/ie201869w
Kenig, 2001, Reactive absorption: optimal process design via optimal modelling, Chem. Eng. Sci., 56, 343, 10.1016/S0009-2509(00)00234-7
Taylor, 2007, (Di)still modeling after all these years: a view of the state of the art, Ind. Eng. Chem. Res., 46, 4349, 10.1021/ie061626m
Kale, 2013, Modelling of the reactive absorption of CO2 using mono-ethanolamine, Int. J. Greenh. Gas Control, 17, 294, 10.1016/j.ijggc.2013.05.019
Jassim, 2006, Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine, Ind. Eng. Chem. Res., 45, 2465, 10.1021/ie050547s
Wang, 2011, Post-combustion CO2 capture with chemical absorption: a state-of-the-art review, Chem. Eng. Res. Des., 89, 1609, 10.1016/j.cherd.2010.11.005
Freguia, 2003, Modeling of CO2 capture by aqueous monoethanolamine, AlChE J., 49, 1676, 10.1002/aic.690490708
Plaza, 2010, Absorber intercooling in CO2 absorption by piperazine-promoted potassium carbonate, AlChE J., 56, 905
Aboudheir, 2003, Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions, Chem. Eng. Sci., 58, 5195, 10.1016/j.ces.2003.08.014
Vaidya, 2007, CO2-alkanolamine reaction kinetics: a review of recent studies, Chem. Eng. Technol., 30, 1467, 10.1002/ceat.200700268
Kucka, 2003, On the modelling and simulation of sour gas absorption by aqueous amine solutions, Chem. Eng. Sci., 58, 3571, 10.1016/S0009-2509(03)00255-0
Chen, 2004, Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems, AlChE J., 50, 1928, 10.1002/aic.10151
Austgen, 1989, Model of vapor–liquid equilibria for aqueous acid gas–alkanolamine systems using the electrolyte-NRTL equation, Ind. Eng. Chem. Res., 28, 1060, 10.1021/ie00091a028
Daubert, 1989
Notz, 2010
Chilton, 1935, Distillation and absorption in packed columns – a convenient design and correlation method, Ind. Eng. Chem. Res., 27, 255, 10.1021/ie50303a004
Stichlmair, 1989, General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns, Gas Sep. Purif., 3, 19, 10.1016/0950-4214(89)80016-7
Li, 2016, Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements, Appl. Energy, 165, 648, 10.1016/j.apenergy.2015.12.109
Fourati, 2012, Experimental study of liquid spreading in structured packings, Chem. Eng. Sci., 80, 1, 10.1016/j.ces.2012.05.031
Cherbański, 2015, Numerical simulations of heat transfer in a packed column: comparison of microwave and convective heating, Heat Mass Transf., 51, 723, 10.1007/s00231-014-1447-5
Durka, 2009, Microwaves in heterogeneous gas-phase catalysis: experimental and numerical approaches, Chem. Eng. Technol., 32, 1301, 10.1002/ceat.200900207
Huepen, 2010, Rigorous modeling and simulation of an absorption-stripping loop for the removal of acid gases, Ind. Eng. Chem. Res., 49, 772, 10.1021/ie9003927
Tönnies, 2011, Sensitivity study for the rate-based simulation of the reactive absorption of CO2, Energy Proc., 4, 533, 10.1016/j.egypro.2011.01.085
Logsdon, 1989, Accurate solution of differential–algebraic optimization problems, Ind. Eng. Chem. Res., 28, 1628, 10.1021/ie00095a010
Drud, 1985, CONOPT: a GRG code for large sparse dynamic nonlinear optimization problems, Math. Program., 31, 153, 10.1007/BF02591747
Asprion, 2006, Nonequilibrium rate-based simulation of reactive systems: simulation model, heat transfer, and influence of film discretization, Ind. Eng. Chem. Res., 45, 2054, 10.1021/ie050608m
Hartono, 2014, Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA), J. Chem. Eng. Data, 59, 1808, 10.1021/je401081e
Chiu, 1999, Heat capacity of alkanolamines by differential scanning calorimetry, J. Chem. Eng. Data, 44, 631, 10.1021/je980217x
Weiland, 1997, Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide, J. Chem. Eng. Data, 42, 1004, 10.1021/je960314v
Yaws, 2009