Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes

Journal of Energy Chemistry - Tập 26 - Trang 839-853 - 2017
Xiaomin Zhang1, Yuefeng Song1,2, Guoxiong Wang1, Xinhe Bao1
1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
2University of Chinese Academy of Sciences, Beijing 100039, China

Tài liệu tham khảo

Meinshausen, 2009, Nature, 458, 1158, 10.1038/nature08017 Henson, 2017, Nat. Commun., 8, 14682, 10.1038/ncomms14682 Liu, 2017, Rep, 7, 39857 Manzone, 2017, Renewable Energy, 108, 250, 10.1016/j.renene.2017.02.074 Genovese, 2013, J. Energy Chem., 22, 202, 10.1016/S2095-4956(13)60026-1 Su, 2016, J. Energy Chem., 25, 553, 10.1016/j.jechem.2016.03.009 Graves, 2011, Renewable Sustainable Energy Rev., 15, 1, 10.1016/j.rser.2010.07.014 Goeppert, 2014, Chem. Soc. Rev., 43, 7995, 10.1039/C4CS00122B Nguyen, 2015, Chem. Ing. Tech, 87, 354, 10.1002/cite.201400090 Costentin, 2013, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A Jhong, 2013, Curr. Opin. Chem. Eng., 2, 191, 10.1016/j.coche.2013.03.005 Jones, 2014, Isr. J. Chem., 54, 1451, 10.1002/ijch.201400081 Lim, 2014, Catal. Today, 233, 169, 10.1016/j.cattod.2013.11.037 Uhm, 2014, Curr. Appl. Phys., 14, 672, 10.1016/j.cap.2014.02.013 Jensen, 2015, Energy Environ. Sci., 8, 2471, 10.1039/C5EE01485A Gómez, 2016, Renewable Sustainable Energy Rev., 61, 155, 10.1016/j.rser.2016.03.005 Zheng, 2017, Chem. Soc. Rev., 46, 1427, 10.1039/C6CS00403B Gao, 2014, J. Energy Chem., 23, 694, 10.1016/S2095-4956(14)60201-1 Yan, 2016, J. Energy Chem., 25, 840, 10.1016/j.jechem.2016.05.002 Matera, 2016, J. Energy Chem., 25, 531, 10.1016/j.jechem.2016.01.017 Sridhar, 1997, Solid State Ionics, 93, 321, 10.1016/S0167-2738(96)00513-9 Stoots, 2009, J. Fuel Cell Sci. Technol., 6, 10.1115/1.2971061 Fu, 2010, Energy Environ. Sci., 3, 1382, 10.1039/c0ee00092b Ebbesen, 2009, Int. J. Green Energy, 6, 646, 10.1080/15435070903372577 Graves, 2011, Solid State Ionics, 192, 398, 10.1016/j.ssi.2010.06.014 Yoon, 2014, Int. J. Hydrogen Energy, 39, 5497, 10.1016/j.ijhydene.2014.01.124 Hartvigsen, 2008, ECS Trans, 12, 625, 10.1149/1.2921588 Stoots, 2009, Int. J. Hydrogen Energy, 34, 4208, 10.1016/j.ijhydene.2008.08.029 Jensen, 2010, Int. J. Hydrogen Energy, 35, 9544, 10.1016/j.ijhydene.2010.06.065 Ebbesen, 2011, Int. J. Hydrogen Energy, 36, 7363, 10.1016/j.ijhydene.2011.03.130 Zhan, 2009, Energy Fuels, 23, 3089, 10.1021/ef900111f Xie, 2011, Energy Environ. Sci., 4, 2218, 10.1039/c1ee01035b Chen, 2014, Energy Environ. Sci., 7, 4018, 10.1039/C4EE02786H Gorte, 2011, Annu. Rev. Chem. Biomol., 2, 9, 10.1146/annurev-chembioeng-061010-114148 Zhang, 2017, J. Energy Chem. Wang, 2017, Fuel Process. Technol., 161, 248, 10.1016/j.fuproc.2016.08.009 Ni, 2008, Int. J. Hydrogen Energy, 33, 2337, 10.1016/j.ijhydene.2008.02.048 Zuo, 2006, Adv. Mater., 18, 3318, 10.1002/adma.200601366 Zhan, 2012, Adv. Mater. Res., 554-556, 404, 10.4028/www.scientific.net/AMR.554-556.404 VahidMohammadi, 2015, J. Electrochem. Soc., 162, F803, 10.1149/2.0021508jes Naeem Khan, 2017, Ionics Ishiyama, 2017, Soc. Jpn, 125, 247 Park, 2015, J. Ceram. Soc. Jpn., 123, 257, 10.2109/jcersj2.123.257 Wang, 2015, J. Power Sources, 277, 261, 10.1016/j.jpowsour.2014.11.092 Kim-Lohsoontorn, 2011, J Power Sources, 196, 7161, 10.1016/j.jpowsour.2010.09.018 Yue, 2012, Solid State Ionics, 225, 131, 10.1016/j.ssi.2012.06.015 Liang, 2010, Int. J. Hydrogen Energy, 35, 2852, 10.1016/j.ijhydene.2009.05.006 Ebbesen, 2014, Chem. Rev., 114, 10697, 10.1021/cr5000865 Kleiminger, 2014, RSC Adv, 4, 50003, 10.1039/C4RA08967G Marina, 2007, J. Electrochem. Soc, 154, B452, 10.1149/1.2710209 Jensen, 2007, Int. J. Hydrogen Energy, 32, 3253, 10.1016/j.ijhydene.2007.04.042 Hauch, 2017, ECS Trans, 75, 3, 10.1149/07542.0003ecst Wang, 2015, ISIJ Int, 55, 381, 10.2355/isijinternational.55.381 Lay-Grindler, 2014, J. Power Sources, 269, 927, 10.1016/j.jpowsour.2014.07.066 Yang, 2008, J. Mater. Chem., 18, 2349, 10.1039/b800163d Hauch, 2008, J. Electrochem. Soc, 155, B1184, 10.1149/1.2967331 Knibbe, 2010, J. Electrochem. Soc, 157, B1209, 10.1149/1.3447752 Ishihara, 2015, ECS Trans, 68, 3279, 10.1149/06801.3279ecst Sohal, 2012, J. Fuel Cell Sci. Technol., 9, 10.1115/1.4003787 Wang, 2013, J. Mater. Chem. A, 1, 12455, 10.1039/c3ta11863k Keane, 2014, Int. J. Hydrogen Energy, 39, 18718, 10.1016/j.ijhydene.2014.09.057 Ebbesen, 2009, J. Power Sources, 193, 349, 10.1016/j.jpowsour.2009.02.093 Tsekouras, 2011, J. Mater. Chem., 21, 9367, 10.1039/c1jm11313e Gan, 2012, J. Electrochem. Soc., 159, F763, 10.1149/2.018212jes Yue, 2012, J. Electrochem. Soc, 159, F442, 10.1149/2.040208jes Yue, 2012, Electrochem. Solid-State Lett, 15, B31, 10.1149/2.021203esl Xu, 2013, J. Power Sources, 230, 115, 10.1016/j.jpowsour.2012.12.068 Torrell, 2015, Faraday Discuss, 182, 241, 10.1039/C5FD00018A Chen, 2015, J. Power Sources, 274, 718, 10.1016/j.jpowsour.2014.10.103 Yao, 2015, New J. Chem., 39, 2956, 10.1039/C4NJ01868K Liu, 2010, Adv. Mater., 22, 5478, 10.1002/adma.201001044 Ge, 2011, RSC Adv, 1, 715, 10.1039/c1ra00355k Hosoi, 2016, J. Phys. Chem. C, 120, 16110, 10.1021/acs.jpcc.5b12755 Wang, 2013, ECS Trans, 57, 3171, 10.1149/05701.3171ecst Yang, 2015, Phys. Chem. Chem. Phys., 17, 11705, 10.1039/C4CP06125J Bidrawn, 2008, Electrochem. Solid-State Lett, 11, B167, 10.1149/1.2943664 Jin, 2011, Int. J. Hydrogen Energy, 36, 3340, 10.1016/j.ijhydene.2010.12.085 Xing, 2012, J. Power Sources, 208, 276, 10.1016/j.jpowsour.2012.02.062 Yoon, 2015, Int. J. Hydrogen Energy, 40, 13558, 10.1016/j.ijhydene.2015.08.012 Marina, 2002, Solid State Ionics, 149, 21, 10.1016/S0167-2738(02)00140-6 Hashimoto, 2006, J. Electroceram, 16, 103, 10.1007/s10832-006-3490-1 Li, 2012, J. Power Sources, 218, 244, 10.1016/j.jpowsour.2012.06.046 Hou, 2014, J. Power Sources, 272, 759, 10.1016/j.jpowsour.2014.09.043 Rager, 2004, J. Am. Ceram. Soc., 87, 1330, 10.1111/j.1151-2916.2004.tb07730.x Li, 2014, Fuel Cells, 14, 1046, 10.1002/fuce.201400021 Huang, 2006, Science, 312, 254, 10.1126/science.1125877 Du, 2016, ACS Nano, 10, 8660, 10.1021/acsnano.6b03979 Osinkin, 2017, Russ. J. Appl. Chem., 90, 41, 10.1134/S1070427217010074 Liu, 2010, Int. J. Hydrogen Energy, 35, 10039, 10.1016/j.ijhydene.2010.08.016 Li, 2016, J. Mater. Chem. A, 4, 9236, 10.1039/C6TA02830F Wang, 2016, J. Power Sources, 305, 240, 10.1016/j.jpowsour.2015.11.097 Lei, 2016, Appl. Energy, 173, 52, 10.1016/j.apenergy.2016.03.116 Park, 2011, J. Power Sources, 196, 7488, 10.1016/j.jpowsour.2011.05.028 Park, 2013, J. Power Sources, 222, 123, 10.1016/j.jpowsour.2012.08.084 Tamm, 2013, Electrochim. Acta, 106, 398, 10.1016/j.electacta.2013.05.127 Song, 2014, Int. J. Hydrogen Energy, 39, 16534, 10.1016/j.ijhydene.2014.03.219 Reeping, 2014, ECS Trans, 61, 57, 10.1149/06101.0057ecst Liu, 2017, J. Electron. Mater., 46, 2301, 10.1007/s11664-016-5268-9 Walch, 2014, Monatsh. Chem., 145, 1055, 10.1007/s00706-014-1220-y Opitz, 2015, Angew. Chem. Int. Ed, 54, 2628, 10.1002/anie.201409527 López, 2012, Int. J. Hydrogen Energy, 37, 9018, 10.1016/j.ijhydene.2012.02.105 Ruan, 2014, Int. J. Hydrogen Energy, 39, 10338, 10.1016/j.ijhydene.2014.04.204 Qin, 2015, J. Solid State Electrochem., 19, 3389, 10.1007/s10008-015-2966-9 Xing, 2015, J. Power Sources, 274, 260, 10.1016/j.jpowsour.2014.10.066 Xu, 2013, J. Power Sources, 239, 332, 10.1016/j.jpowsour.2013.03.182 Gan, 2014, J. Power Sources, 245, 245, 10.1016/j.jpowsour.2013.06.107 Zhang, 2016, Electrochim. Acta, 212, 32, 10.1016/j.electacta.2016.06.137 Katz, 2012, J. Catal., 293, 145, 10.1016/j.jcat.2012.06.017 Neagu, 2013, Nat. Chem., 5, 916, 10.1038/nchem.1773 Neagu, 2015, Nat. Commun., 6, 8120, 10.1038/ncomms9120 Myung, 2016, Nature, 537, 528, 10.1038/nature19090 Jardiel, 2010, Solid State Ionics, 181, 894, 10.1016/j.ssi.2010.05.012 Tsekouras, 2013, Energy Environ. Sci., 6, 256, 10.1039/C2EE22547F Li, 2015, Electrochim. Acta, 153, 325, 10.1016/j.electacta.2014.11.151 Arrivé, 2013, J. Power Sources, 223, 341, 10.1016/j.jpowsour.2012.09.062 Li, 2013, ACS Appl. Mater. Interfaces, 5, 8553, 10.1021/am4020132 Qi, 2014, Int. J. Hydrogen Energy, 39, 5485, 10.1016/j.ijhydene.2014.01.108 Liu, 2016, J. Mater. Chem. A, 4, 17521, 10.1039/C6TA06365A Liu, 2016, ACS Catal, 6, 6219, 10.1021/acscatal.6b01555 Sun, 2016, Nano Lett, 16, 5303, 10.1021/acs.nanolett.6b02757 Wang, 2016, J. Mater. Chem. A, 4, 14163, 10.1039/C6TA06078A Xu, 2014, J. Power Sources, 246, 346, 10.1016/j.jpowsour.2013.07.082 Ye, 2017, Nat. Commun., 8, 14785, 10.1038/ncomms14785 Li, 2014, Int. J. Hydrogen Energy, 39, 20888, 10.1016/j.ijhydene.2014.10.053 Wei, 2014, Sci. Rep., 4, 5156, 10.1038/srep05156 Oh, 2015, J. Phys. Chem. Lett., 6, 5106, 10.1021/acs.jpclett.5b02292 Zhou, 2016, Chem. Mater., 28, 2981, 10.1021/acs.chemmater.6b00071 Ruan, 2015, Catal. Sci. Technol., 5, 1929, 10.1039/C4CY01254B Gan, 2016, Phys. Chem. Chem. Phys., 18, 3137, 10.1039/C5CP06742A Adler, 2004, Chem. Rev., 104, 4791, 10.1021/cr020724o Juhl, 1996, J. Power Sources, 61, 173, 10.1016/S0378-7753(96)02361-0 Zhu, 2008, Electrochem. Solid-State Lett, 11, B83, 10.1149/1.2895009 Vivet, 2011, J. Power Sources, 196, 7541, 10.1016/j.jpowsour.2011.03.060 Farhad, 2012, AlChE J, 58, 1248, 10.1002/aic.12652 Shi, 2013, Electrochim. Acta, 88, 644, 10.1016/j.electacta.2012.10.107 Li, 2014, Int. J. Hydrogen Energy, 39, 13738, 10.1016/j.ijhydene.2014.03.014 Hu, 2014, J. Power Sources, 269, 180, 10.1016/j.jpowsour.2014.06.164 Zhang, 2015, Nano Lett, 15, 1703, 10.1021/nl5043566 Li, 2013, J. Power Sources, 243, 118, 10.1016/j.jpowsour.2013.05.119 Feng, 2014, Nat. Commun., 5, 4374, 10.1038/ncomms5374 Yu, 2014, Phys. Chem. Chem. Phys., 16, 11633, 10.1039/C4CP01054J Feng, 2015, Phys. Chem. Chem. Phys, 17, 12273, 10.1039/C5CP00114E Kim, 2001, Solid State Ionics, 143, 379, 10.1016/S0167-2738(01)00877-3 Jørgensen, 2001, J. Electrochem. Soc., 148, A433, 10.1149/1.1360203 Chen, 2003, J. Power Sources, 123, 17, 10.1016/S0378-7753(03)00436-1 Barfod, 2007, J. Electrochem. Soc, 154, B371, 10.1149/1.2433311 Cimenti, 2007, Fuel Cells, 7, 377, 10.1002/fuce.200700020 Nechache, 2014, J. Power Sources, 258, 164, 10.1016/j.jpowsour.2014.01.110 Nielsen, 2014, Electrochim. Acta, 115, 31, 10.1016/j.electacta.2013.10.053 Schichlein, 2002, J. Appl. Electrochem., 32, 875, 10.1023/A:1020599525160 Leonide, 2008, J. Electrochem. Soc, 155, B36, 10.1149/1.2801372 Sonn, 2008, J. Electrochem. Soc, 155, B675, 10.1149/1.2908860 Endler, 2010, J. Electrochem. Soc, 157, B292, 10.1149/1.3270047 Leonide, 2010, J. Electrochem. Soc, 157, B234, 10.1149/1.3265473 Liu, 2010, J. Electrochem. Soc, 157, B1858, 10.1149/1.3494214 Liu, 2011, J. Electrochem. Soc, 158, B215, 10.1149/1.3519492 Sumi, 2012, Electrochim. Acta, 67, 159, 10.1016/j.electacta.2012.02.021 Sumi, 2013, J. Power Sources, 226, 354, 10.1016/j.jpowsour.2012.11.015 Zhang, 2015, Int. J. Hydrogen Energy, 40, 3332, 10.1016/j.ijhydene.2015.01.040 Zhang, 2016, Catal. Sci. Technol., 6, 4945, 10.1039/C5CY02232K Wang, 2007, Top. Catal., 46, 380, 10.1007/s11244-007-9005-8 Luo, 2014, Int. J. Hydrogen Energy, 39, 10359, 10.1016/j.ijhydene.2014.05.018 Patcharavorachot, 2016, Energy Convers. Manage., 120, 274, 10.1016/j.enconman.2016.04.100 Sun, 2016, Chem. Commun., 52, 13687, 10.1039/C6CC03503E