Lithium Potential of the Indian Granitic Pegmatites
Tóm tắt
There is a progressively increasing demand for lithium (Li) due to its growing applications in the Li-ion batteries for electric vehicles. Accordingly, to take stock of the situation with respect to lithium potentiality of the Indian granitic pegmatites, a critical synthesis is presented here. India’s exploration programme for lithium was not sustained due to fluctuating domestic demand and its availability in the world market. Data reveals that the Indian Li-pegmatites belong to the Lithium-Caesium-Tantalum (LCT) family, and occur manly in parts of Bihar-Jharkhand, Bastar-Odisha and Karnataka, with some in Rajasthan, Maharashtra, West Bengal and Assam. Major mineral phases of Li are lepidolite, amblygonite and spodumene, the last one being dominant in Karnataka. Bulk of the Li-pegmatites have been derived from the peraluminous, geochemically-evolved S-type granites. During fractionation, wherever saturation was attained, precipitation of independent minerals of Li took place. Lithium minerals are largely restricted to the replacement zones of pegmatites, and, at places, in the greisenised pockets within the pegmatites and parent granite margins. Pegmatites from Karnataka appear to have more potential relative to those from Bihar-Jharkhand and Rajasthan. Systematic exploration of Li-pegmatites may prove rewarding in establishing their Li-potential. Li-pegmatite fields may be mapped by applications of remote sensing, using various methods and sensors through spectral angle mapper (SAM) classification on ‘HyMap’ data. SAM classification may be used to assess the efficacy of advanced spaceborne thermal emission and reflection radiometer (ASTER), and Landsat-8 operational land imager (OLI) data, including new combinations of red, green and blue (RGB). By combined use of ASTER imagery and spectro-radiometric analysis, mapping of pegmatite veins may be carried out. As the LCT-type pegmatites are sourced mostly from previously un-melted, mica-enriched metamorphic rocks, muscovite and biotite groups of mica host bulk of the trace elements and thus fingerprint for the LCT-type pegmatites. Also, P- and Cs-enriched Li-pegmatites lend further support to the S-type sources for the LCT-type pegmatites. Accordingly, all the LCT-type pegmatites in India should form the first order target for Li-exploration. Characteristic replacement mineral assemblages like cleavelandite, topaz, greisen, schorl and lithian muscovite may also serve as guides for lithium exploration.
Tài liệu tham khảo
Acosta-Vigil, A., London, D., Morgan, G.B. and Dewers, T.A. (2003) Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800°C and 200 MPa: applications of the aluminium saturation index. Contrib. Mineral. Petrol., v.146, pp.100–119.
Agrawal, N.K. and David, J.S. (1990) Preliminary appraisal of reported lepidolite occurrence around Dhir Bil, Dhubri district, Assam. Rec. Geol. Surv. India, v.123, pp.43.
Babu, S.K. (1975) On an occurrence of hiddenite from a pegmatite near Kabbur, Hassan district, Mysore State. Curr. Sci., v. 44(11), pp.387–388.
Banerjee, D.C., Ranganath, N., Maithani, P.B. and Jayaram, K.M.V. (1987) Rare metal-bearing pegmatites in parts of southern Karnataka, India. Jour. Geol. Soc. India, v.30, pp.507–513.
Banerjee, D.C., Krishna, K.V.G., Murthy, G.V.G.K., Srivastava, S.K. and Sinha, R.P. (1994) Occurrence of spodumene in the rare metal-bearing pegmatites of Marlagall-Allapatna area, Mandya district, Karnataka. Jour. Geol. Soc. India, v.44, pp.127–139.
Barman, J., David, J.S. and Sarma, G. (1989) Preliminary appraisal of reported lepidolite occurrence around Dhir Bil, Dhubri district, Assam. Rec. Geol. Surv. India, v.122, pp.28.
Basu, S.K. and Ghosh, R.N. (1999) Rare earth elements and rare metal metallogeny in Precambrian terrains of Purulia district, West Bengal, and its status of exploration. Proc. Nat. Sem. Strategic Rare Earth Minerals and Metals, held at DMRL, Hyderabad, May 4–5, 1999, pp.129–140.
Bhattacharjee, J., Fareeduddin and Jain, S.S. (1993) Tectonic setting, petrochemistry and tungsten metallogeny of the Sewariya granite in the South Delhi Fold Belt, Rajasthan. Jour. Geol. Soc. India, v.42(1), pp. 3–16.
Bhola, K.L. (1971) Atomic Minerals Deposits in Bihar Mica Belt. Proc. Indian Nat. Sci. Acad., v.37A(2), pp.145–168.
Bhola, K.L. (1977) Atomic Minerals of Rajasthan. In: Roonwal, M.L. (ed.), The Natural Resources of Rajasthan, v.2, pp.789–822.
Bhola, K.L. and Rao, K.B. (1973) Radioactive pegmatites of South India. Trans. Min. Geol. Met. Inst., v.70, pp.75–98.
Bhola, K.L., Raghvendra Rao, P. and Chaube, D.N. (1966) Lithium-bearing pegmatites of India. Jour. Indian Geosc. Assn., v.6, pp.7–16.
Breaks, F.W. and Moore, J.M., Jr. (1992) The Ghost Lake batholiths, Superior Province of north-western Ontario: a fertile, peraluminous granite-rare-element pegmatite system. Can. Mineral., v.30, pp.835–876.
Breaks, F.W., Selway, J.B. and Tindle, A.G. (2005) Fertile, peraluminous granites and related rare-element pegmatites, Superior Province of Ontario. In: R.L. Linnen and I.M. Samson (Eds.), Rare element geochemistry and mineral deposits. GAC Short Course Notes 17, pp.87–125.
Business Today (2020) Reserves of lithium, required for production of EV batteries, found near Bengaluru. February 18, 2020 Updated 11:51 IST
Cameron, E.N., Jahns, R.H., McNair, A. and Page, L.R. (1949) Internal structure of granitic pegmatites. Econ. Geol., Monog., v.2, 115p.
Cardoso-Fernandes, J., Lima, A. and Teodoro, A.C. (2018) Potential of Sentinel-2 data in the detection of lithium (Li)-bearing pegmatites: a case study. Proceedings Volume 10790, SPIE Remote Sensing, SPIE, 15p.
Cardoso-Fernandes, J., Silva, J., Lima, A., Teodoro, A.C., Perrotta, M. et al. (2020) Reflectance spectroscopy to validate remote sensing data/algorithms for satellite-based lithium (Li) exploration (Central East Portugal). Proc. SPIE 11534, Earth Resources and Environmental Remote Sensing/GIS Applications XI, 115340M (20 September 2020); doi:https://doi.org/10.1117/12.2573929
Cardoso-Fernandes, J., Silva, J., Dias, F., Lima, A., Teodoro, A.C., Barres, O., Cauzid, J., Perrotta, M., Roda-Robles, E. and Ribeiro, M.A. (2021) Tools for remote exploration: a lithium (Li) dedicated spectral library of the Fregeneda-Almendra aplite-pegmatite field. Data, v.6, pp.33; doi:https://doi.org/10.3390/data6030033
Cerny, P. (1991) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl. Geochem., v.7, pp.393–416.
Cerny, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineral., v.43, pp.381–421.
Cerny, P., London, D. and Novak, M. (2012) Granitic pegmatites as reflections of their sources. Elements, doi: https://doi.org/10.2113/gselements.8.4.289
Chappell, B.W. and White, A.J.R. (2001) Contrasting granite types; 25 years later. Australian Jour. Earth Sci., v.48, pp.489–499.
Crookshank, H. (1963) Geology of southern Bastar and Jeypore from Bailadila to Eastern Ghats. Mem. Geol. Surv. India, v.87, pp.149.
Dahl, P.S., Wehn, D.C., Feldmann, S.G. (1993) The systematics of trace-element partitioning between coexisting muscovite and biotite in metamorphic rocks from the Black Hills, South Dakota, USA. Geochim. Cosmochim. Acta, v.57, pp.2487–2505.
Datta, A.K. (1973) Internal structure, petrology and mineralogy of calc — alkaline pegmatites in parts of Rajasthan. Mem. Geol. Surv. India, v.102, p.112.
Derek, J., McCracken and Haigh, M. (1993) Lithium (Minerals), Annual Review. Mining Jour., London, pp.90–91.
Deshpande, M.L. (1976) The cassiterite-lepidolite bearing pegmatites, Bastar district, Madhya Pradesh. Indian Minerals, v.30, pp.67–74.
Deshpande, M.L. (1978) Lithium resources in India. Indian Minerals, v.32(4), pp. 41–47.
Deshpande, M.L. and Bose, S.K. (1979) Mineralisation associated with granites and pegmatites in India — Guidelines for future work. Indian Minerals, v.33, pp.1–18.
Devaraju, T.C., Rajshekhar, N., Srikantappa, C., Khanadali, S.D. and Subba Rao, G. (1990) Lithium pegmatites of Amareshwar, Raichur district, Karnataka, India. In: Naqvi, S.M. (Editor), Precambrian continental crust and its economic resources. Developments in Precambrian Geology, v.8, pp.653–669. doihttps://doi.org/10.1016/S0166-2635(08)70188-9
Dunn, J.A. and Dey, A.K. (1942) The geology and petrology of Eastern Singhbhum and surrounding areas. Mem. Geol. Surv. India, v.69(2), pp.281–456.
Dwivedy, K.K., Srivastava, D.C. and Jayaram, K.M.V. (1982) Tantalite recovery from pegmatitic alluvium of Marlagalla area, Karnataka. Proceedings of International Symposium on Recent Advances in Particulate Science and Technology, December 8–10, 1982, IIT Madras, Paper No.49, pp.527–533.
Dwivedy, K.K. (1999) Chemistry of pegmatitic minerals from Bastar-Koraput pegmatite belt, Madhya Pradesh, India. Jour. Appl. Geochem., v.1(1), p. 1–20.
Escadafal, R., Gouinaud, C., Mathieu, R. and Et Pouget, M. (1993) Le spectroradiometre de terrain: un outil de La teledetection et de La pedologie. Cah. Orstom, Ser. Pedol. Xxviii, Nu 1, pp.15–29.
Eby, G.N. (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, v.26, pp. 115–134.
Faruque, B.M. (2020) Editor’s column. SGAT Bull., v. 21, June–December 2020, No. 1.
Ferrell, J.E. (1985) Lithium. Minerals Facts and Problems (1985). US Department of Interior. Bureau of Mines, Washington, D.C., pp.461–470.
Gemusse, U., Lima, A. and Teodoro, A. (2018) Pegmatite spectral behaviour considering ASTER and landsat 8 oli data in naipa and muiane mines (alto ligonha, Mozambique). In: Proc. SPIE 10790, Earth Resources and Environmental Remote Sensing/GIS Applications. Vol. IX, pp. 1079011. doi:https://doi.org/10.1117/12.2325555, 9 October 2018
Greim, P., Solomon, A.A. and Breyer, C. (2020) Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nature Commun., v.11, 4570. doi:https://doi.org/10.1038/s41467-020-18402-y
GSI (2006) Geology and mineral resources of the States of India. Part VII -Karnataka & Goa (Compiled by Operation: Karnataka & Goa, Bangalore). Misc. Publ. No.30, pp.38–39.
https://youtu.be/NQ1mlKQrEbl $ 1 trillion of lithium and other minerals in Afghanistan: will a new great game begin under Taliban? Heinrich
E. Wm. (1948) Pegmatites of Eight Mile Park, Fremont County, Colorado. American Mineralogist, v.33, pp.420–448, 550–588.
Jacob Koshy (2020) Four-fold jump in Li-ion battery imports since 2016. The Hindu, New Delhi, February 09, 2020, 20.08 IST (Updated February 12, 2020, 17.52 IST). https://www.thehindu.com > News > National
Joshi, K.B., Ray, S., Joshi, D. and Ahmad, T. (2014) Geochemistry of pegmatites from South Delhi Fold Belt: a case study from Rajgarh, Ajmer district, Rajasthan. Curr. Sci., v.106(2), pp.1725–1730.
Krishna, K.V.G. and Thirupathi, P.V. (1999). Rare metal and rare earth pegmatites of southern India. Explor. Res. Atomic Minerals, v.12, pp.133–167.
Kumar, C., Chatterjee, S., Oommen, T., Guha, A. and Mukherjee, A. (2021) Multi-sensor datasets-based optimal integration of spectral, textural, and morphological characteristics of rocks for lithological classification using machine learning models. Geocarto. Internat., doi:https://doi.org/10.1080/10106049.2021.1920632
Lapedes, D.N. (1978) Geochemical distribution of elements. In: McGraw-Hill Encyclopedia of the Geological Sciences, pp.200–23.
London, D., Morgan, G.B. VI, Acosta-Vigil, A. (2012) Experimental simulations of anatexis and assimilation involving metapelite and granitic melt. Lithos. doi:https://doi.org/10.1016/j.lithos.2012.04.006
Mahadevan, T.M. (1968) Some aspects of lithium mineralisation in the Bihar Mica Belt. Indian Minerals, v.22(1), pp. 80–86.
Mahadevan, T.M. (2002) Geology of Bihar and Jharkhand. Geol. Soc. India, Bangalore, 563p.
Mahadevan, T.M. and Murthy, M.V.N. (1964) Geological setting and its bearing on origin of mica pegmatites of the Bihar of the Bihar Mica Belt. Proc. 22nd Int. Geol. Sci. Congress, v.VI, pp.45–57.
Mahadevan, T.M. and Maithani, J.B.P. (1967) Geology and petrology of the mica pegmatites in parts of the Bihar Mica Belt. Mem. Geol. Surv. India, v.93, pp.1–114.
Maithani, P.B. and Nagar, R.K. (1999) Rare metal and rare earth pegmatites of western India. Exploration and Research for Atomic Minerals, v.12, pp.101–131.
Maithani, P.B., Gurjar, R. and Chopra, R. (1999) Lepidolite-bearing pegmatites of the Sibegaon area, Sirohi district, Rajasthan, India, and their economic significance. Proceedings of the National Seminar on strategic, rare, rare-earth minerals and metals, held at DMRL, Hyderabad, during 4–5 May, pp.117–128.
Maithani, P.B. and Singh, Y. (2011). Studies on tapiolite from Arehalli pegmatite, Hassan district, Karnataka. Jour. Geol. Soc. India, v.78, pp.349–354.
Manning, D.A.C. (1981) The effect of fluorine on liquidous phase relationships in the system Qz-Ab-Or with excess waters at 1 kbar. Contrib. Mineral. Petrol., v.76, pp.206–215.
Mallet, F.R. (1874) Geological notes on part of northern Hazaribagh. Rec. Geol. Surv. India, v.7, Pt.1, pp.32–44.
Mao, J. (2022) South Korea’s battery giants forced to increase prices due to price hike of raw materials from China. REAI News, v.22(1), Part 1, January 1–15, 2022.
Matin, A., Nandi, K. and Mukhopadhyay, D. (1988) An occurrence of spodumene in the Sandur schist belt, Karnataka. Jour. Geol. Soc. India, v.32, pp.68–70.
Martin, R.F. and De Vito, C. (2005) The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Canadian Mineral., v.43, pp.2027–2048.
McFarland, M. (2021) America’s electric cars need lithium so badly it may wipe out this species. CNN Business, Updated 1848 GMT (0248 HKT) May 10, 2021.
Mehta, P.K. (1974) The pegmatite of Danta mine, Bhunas (Rajasthan), India, its structure, mineralogy and genesis. Bull. Indian Geol. Assoc., v.7, pp.67–88.
Mendes, D., Perrotta, M.M., Costa, M.C.A. and Paes, V.J.C. (2017) Mapeamentoespectral para identificacao de assinaturasespectrais de minerais de litioem imagens ASTER (NE/MG). In: Proceedings of the Anais do XVIII SimposioBrasileiro de SensoriamentoRemoto, v.28–29. Santos-SP, Brasil, pp.5273–5280.
Meshram, R.R., Singh, B., Mishra, M.K., Hrushikesh, H., Siddiqui, A., Shukla, D., Akhtar, R. and Meshram, T.M. (2021) Petrological and geochemical studies of lepidolite and non-lepidolite pegmatites (LCT type) from Chakrasila, Dhubri district, Assam, North East India. Open Jour. Geol., v.11, pp.81–104. doi:https://doi.org/10.4236/ojg.2021.113006
Mohapatra, B.K., Mishra, P.P., Singh, P.P., Paul, A.K. and Rajeev (2005) Corich lithiophorite in manganese ores of the Bonai-Keonjhar belt, Orissa. Jour. Geol. Soc. India, v.66, pp.407–411.
Momose, A., Miyatake, S., Arvelyna, Y., Nguno, A., Mhopjeni, K., Sibeso, M., Muyongo, A. and Muvangua, E. (2011) Mapping pegmatite using HyMap data in southern Namibia. In: Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 2216–2217. Vancouver, BC, Canada, 24–29 July 2011.
Morsli, Y., Zerhouni, Y., Maimouni, S., Alikouss, S., Kadir, H. and Baroudi, Z. (2021) Pegmatite mapping using spectroradiometry and ASTER data (Zenaga, Central Anti-Atlas, Morocco). Jour. African Earth Sci., v.177, 104153; doi:https://doi.org/10.1016/j.jafrearsci.2021.104153
Mukhopadhyay, A.K. (1980) A new occurrence of scheelite, molybdenite, powellite and gadolinite in Phalwada-Positara area, district Sirohi, Rajasthan. Jour. Geol. Soc. India, v.22, pp.147–148.
Ninomiya, Y. (2016) Lithologic mapping with multispectral ASTER TIR and SWIR data. Proc. SPIE 5234. doi:https://doi.org/10.1117/12.511902 (SPIE, Bellingham, WA, 2004). 0277-86X/04/$15.
Pandian, M.S. and Varma, O.P. (2001) Geology and geochemistry of topaz granite and associated wolframite deposit at Degana, Rajasthan. Jour. Geol. Soc. India, v.57, pp.297–307.
Paukov, E.I., Kovalevskaya, Y.A., Kiseleva, I.A. and Shuriga, T.N. (2010) A low-temperature heat capacity study of natural lithium micas — heat capacity of zinnwaldite. Jour. Therm. Anal. Calorim., v.99, pp.709–712.
Pour, B.A., Hashim, M. and Pournamdari, M. (2015) Chromitite prospecting using landsat TM and ASTER remote sensing data. In: Isprs Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume Ii-2/W2, 2015 Joint International Geoinformation Conference 2015, 28–30 October 2015. Kuala Lumpur, Malaysia.
Raghu Krishnan (2020) Lithium reserve found in Mandya near Bengaluru. ENT Bureau, February 18, 2020, 07:41 IST.
Rajendran, S., Nasir, S., Kusky, T.M., Ghulam, A., Gabr, S. and El Gali, M. (2013) Detection of hydrothermal mineralised zones associated with listwaenites rocks in the Central Oman using ASTER data. Ore Geol. Rev., v.53, pp.470–488.
Raju, B.N.V. (1967) A note on a rare mineral bearing pegmatite at Kadaval, Ratnagiri district, Maharashtra. Bull. Geol. Soc. India, v.4(1), pp.1–3.
Ramesh Babu, P.V. (1999) Rare metal and rare earth pegmatites of central India. Exploration and Research for Atomic Minerals, v.12, pp.7–52.
Rao, N.K. and Rao, G.V.U. (1970) A mineralogical study of some lithium-bearing micas of India. Proc. Indian National Science Academy, v.36A, No.4, pp.262–269.
Rao, B.R. and Rao, M.D.R. (1939) Spodumene and its associated minerals from Ooregum mine, Kolar gold field. Rec. Mysore Geology Department, v.37, pp.38.
Rath, R. (2020) Proceedings and recommendations of the webinar on raw material security for mineral-based industries. SGAT Bull., v.21(1), pp. 39–40.
Reuter (2021) https://www.mining.com/web/ev-industry-must-work-closer-with-lithium-suppliers-executives-say/?utm_source=Daily_Digest&utm_medium=email&utm_campaign=MNG-DIGESTS&utm_content=ev-industry-must-work-closer-with-lithium-suppliers-executives-say
Roy, A. and Biswas, S.K. (1983) Stratigraphy and structure of the Sandur schist belt, Karnataka. Jour. Geol. Soc. India, v.56(5), pp. 553–571.
Sadashivaiah, M.S., Devaraju, T.C., Gowd Reddy, K., Manchigad, B.S., Linganagaudar, V.P., Myageri, S.K. and Kunkudti, T.M. (1980) Spodumene pegmatites from Hutti, Raichur district, Karnataka State. Proc. Indian Acad. Sciences (Earth Planet. Sci.), v.89(3), pp.403–411.
Santos, D., Teodoro, A., Lima, A. and Cardoso-Fernandes, J. (2019) Remote sensing techniques to detect areas with potential for lithium exploration in Minas Gerais, Brazil. September 2019. In: Schulz, K., Michel, U., Nikolakopoulos, K.G. (Eds.), Proceedings of the SPIE, SPIE Remote Sensing, Strasbourg, France, pp.9–12. SPIE: Bellingham, WA, USA.
Sasi, A. (2021) Looking for lithium toehold, India finds a small deposit in Karnataka. The Indian Express, New Delhi. Updated: January 11, 2021, 8:25:12 am. https://indianexpress.com
Sarkar, P., Bandyopadhyay, K.C., Ghosh Roy, A. and Mukhopadhyay, G. (1993). On the occurrence of allanite-bastnaesite and pollucite in the Chhotanagpur Gneissic Complex, Purulia district, West Bengal. Indian Minerals, v.47, pp.237–242.
Singh, Y. (1998). Early Proterozoic rare metal and tin pegmatites near Kawadgaon, Bastar, M.P: An example of vertical pegmatite zonation. Jour. Geol. Soc. India, v.51, pp.175–182.
Singh, Y. (2007). Trace element chemistry of muscovite from rare metal pegmatites of Kawadgaon, Bastar district, Chhattisgarh. Jour. Geol. Soc. India, v.69(4), pp.795–798.
Singh, Y. (2020a) Attributes of lepidolite and amblygonite (lithium minerals) from Bastar pegmatites, central India. SGAT Bull., v.21, (1), pp.20–28.
Singh, Y. (2020b) Rare Earth Element Resources: Indian Context. Springer, pp. 1–395. https://www.springer.com/gp/book/9783030413521
Singh, Y., Rai, S.D., Sinha, R.P. and Kaul, R. (1991) Lithium pegmatites in part of Bastar craton, central India. Exploration and Research for Atomic Minerals, v.4, pp.93–108.
Singh, Y. and Singh, A.K. (2019) Challenges in mining of pegmatite-hosted lithium ores from central India. Proc. International Conference on Mining — Present and Future — Investments, Issues and Challenges, 23–25 October, 2019, held at The Institute of Engineers (India), Hyderabad, pp.80–85.
Singh, Y. R., Viswanathan, Goyal, N., Panigrahi, B., Jain, P.K. and Khandelwal, M.K. (2010a). X-ray diffraction and geochemical studies in columbite-tantalites from Richhmaliyan, Ajmer district, Rajasthan, India. Indian Mineralogist, Vol. 44, No. 1, pp. 167–172.
Singh, Y., Bagora, S., Jain, P.K., Pandit, P.S.C. and Mishra, K.S. (2010b) Rb, Sr, and Ba geochemistry of coexisting granitoids-pegmatoids from the Kawadgaon-Challanpara area, central India: implications for rare metal exploration. Jour. Appl. Geochem., v.12, (3), pp.447–456.
Singh, Y. and Viswanathan, R. (2015) Rare metal and rare earth element mineral speciation in pegmatite belts of India: Implications for classification and genesis. Exploration and Research for Atomic Minerals, v.25, pp.105–133.
Singh, Y., Viswanathan, R., Jagadeesan, P., Mundra, K.L., Bhatt, A.K., Gupta, P.K., Rai, S.D. and Joshi, G.B. (2017a). Crystallo-chemical studies on tapiolite and pseudo-ixiolite from pegmatites of Pipaliya and Alniyawas, Ajmer district, Rajasthan, India. Jour. Geosciences Res., Special Volume No.1, pp.139–148.
Singh, Y., P.S.C. Pandit, Sanjay Bagora and P.K. Jain (2017b). Mineralogy, geochemistry, and genesis of the co-genetic granite-pegmatite-hosted rare metal and rare earth deposits of the Kawadgaon area, Bastar Craton, Central India. Jour. Geol. Soc. India, v.89(2), pp.115–130.
Sinha, R. P. (1999) Rare metal and rare earth pegmatites of eastern India. Exploration and Research for Atomic Minerals, v.12, pp.53–100.
Som, S.K., Bandyopadhyay, K.C., Basu, S.K., Santra, D.K. and Ghosh, R.N. (2002) Li-Cs-Rb mineralisation in Proterozoic zoned pegmatites of Beku, West Bengal. Jour. Geol. Soc. India, v.60, pp.493–503.
Sowmya, D.R., Deepa Shenoy, P. and Venugopal, K.R. (2017) International Journal of Computer Applications (0975–8887) 161 — (11). doi:https://doi.org/10.5120/ijca2017913306
Swarajya Staff (2022) https://swarajyamag.com/insta/strategic-minerals-india-enters-into-agreement-to-explore-cobalt-and-lithium-mines-in-australia
Talapatra, A., Sarkar, P. and Bandopadhyay, K.C. (1995) Rare earth and rare metal bearing pegmatites along some lineaments, north of Purulia, West Bengal. Indian Jour. Earth Sci., v.22(1–2), pp.13–20.
Tkachev, A.V. (2011) Evolution of metallogeny of granitic pegmatites associated with orogens throughout geologic time. In: Sial, A.N., Bettencourt, J.S. and De Campos, C.P. (Eds.), Granite-Related Ore Deposits. Geol. Soc. London Spec. Publ., no.350, pp.7–23.
USGS (2020) Mineral commodity summaries, January 2020. Lithium, pp. 98–99.
Van der Meer, F.D., Van der Werff, H.M.A., Van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H. et al. (2012) Multi- and hyper-spectral geologic remote sensing: a review. Int. Jour. Appl. Earth Obs. Geoinf. 14(2012), 112–128.
Viswanathan, S. and Singh, Y. (2010). Critical element ratio maps of granitic terrains for exploration of atomic minerals. Jour. Applied Geochemistry, Vol. 12, No. 3, pp. 333–341.
Vivek Dubey (2021) Geological Survey of India takes up 7 projects for lithium exploration. https://www.businesstoday.in/latest/economy/story/geological-survey-of-india-takes-up-7-projects-for-lithium-exploration-302680-2021-07-28?utm_source=btweb_story_share, 28 July 2021, Updated July 28, 2021, 7:34 PM IST
www.electronicsb2b.com (2020) Lithium reserve found in Mandya: Report-https://www.electronicsb2b.com/industry-buzz/lithium-reserve-found-in-mandya-report/February 18, 2020.