A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism
Tài liệu tham khảo
Hua, 1996, Kinetics and mechanism of the sonolytic degradation of CCl4: intermediates and byproducts, Environ. Sci. Technol., 30, 864, 10.1021/es9502942
Chowdhury, 2009, Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes – a review, Sci. Total Environ., 407, 2474, 10.1016/j.scitotenv.2008.12.031
Ferkous, 2015, Sonochemical degradation of naphthol blue black in water: effect of operating parameters, Ultrason. Sonochem., 26, 40, 10.1016/j.ultsonch.2015.03.013
Balachandran, 2016, Understanding acoustic cavitation for sonolytic degradation of p-cresol as a model contaminant, Chemosphere, 147, 52, 10.1016/j.chemosphere.2015.12.066
Serna-Galvis, 2015, Sonochemical degradation of the pharmaceutical fluoxetine: effect of parameters, organic and inorganic additives and combination with a biological system, Sci. Total Environ., 524–525, 354, 10.1016/j.scitotenv.2015.04.053
Goskonda, 2002, Sonochemical degradation of aromatic organic pollutants, Waste Manage. (Oxford), 22, 351, 10.1016/S0956-053X(01)00035-6
Sivasankar, 2009, Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics, Ultrason. Sonochem., 16, 769, 10.1016/j.ultsonch.2009.02.009
Suslick, 1990, On the origin of sonoluminescence and sonochemistry, Ultrasonics, 28, 280, 10.1016/0041-624X(90)90033-K
Yasui, 2008, The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions, J. Chem. Phys., 128, 184705, 10.1063/1.2919119
Suslick, 1999, Acoustic cavitation and its chemical consequences, Philos. Trans. R. Soc. London Series A, 357, 335, 10.1098/rsta.1999.0330
Lifka, 2003, The use of ultrasound for the degradation of pollutants in water: aquasonolysis – a review, Eng. Life Sci., 3, 253, 10.1002/elsc.200390040
Petrier, 1998, Ultrasound and environment: Sonochemical destruction of chloroaromatic derivatives, Environ. Sci. Technol., 32, 1316, 10.1021/es970662x
Mahamuni, 2010, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation, Ultrason. Sonochem., 17, 990, 10.1016/j.ultsonch.2009.09.005
Pang, 2011, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater, Desalination, 277, 1, 10.1016/j.desal.2011.04.049
Eren, 2012, Ultrasound as a basic and auxiliary process for dye remediation: a review, J. Environ. Manage., 104, 127, 10.1016/j.jenvman.2012.03.028
Doktycz, 1990, Interparticle collisions driven by ultrasound, Science, 247, 1067, 10.1126/science.2309118
Gerth, 1980, Heterogeneous nucleation of bubbles at solid surfaces in gas-supersaturated aqueous solutions, J. Colloid Interf. Sci., 74, 80, 10.1016/0021-9797(80)90172-1
Mørch, 2007, Reflections on cavitation nuclei in water, Phys. Fluids, 19, 072104, 10.1063/1.2747210
Shchukin, 2011, Ultrasonic cavitation at solid surfaces, Adv. Mater., 23, 1922, 10.1002/adma.201004494
Bremond, 2006, Controlled multibubble surface cavitation, Phys. Rev. Lett., 96, 224501, 10.1103/PhysRevLett.96.224501
Maksimov, 2013, Heterogeneous vapor bubble nucleation on a rough surface, Langmuir, 29, 3924, 10.1021/la400340y
Yuan, 2016, Heterogeneous bubble nucleation on heated surface from insoluble gas, Int. J. Heat Mass Transfer, 101, 1185, 10.1016/j.ijheatmasstransfer.2016.05.138
Belova, 2010, Selective ultrasonic cavitation on patterned hydrophobic surfaces, Angew. Chem. Int. Ed., 49, 7129, 10.1002/anie.201002069
Zhang, 2014, Controlled cavitation at nano/microparticle surfaces, Chem. Mater., 26, 2244, 10.1021/cm404194n
Melmed, 1966, Influence of adsorbed gas on surface diffusion and nucleation, J. Appl. Phys., 37, 275, 10.1063/1.1707825
Roldugin, 2002, Heterogeneous nucleation on fractal surfaces, DokPC, 383, 84
Hedges, 2013, Selective nucleation in porous media, Soft Matter, 9, 9763, 10.1039/c3sm51946e
Belova, 2011, Ontrolled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces, ACS Appl. Mater. Interfaces, 3, 417, 10.1021/am101006x
Hiller, 1998, Time-resolved spectra of sonoluminescence, Phys. Rev. Lett., 80, 1090, 10.1103/PhysRevLett.80.1090
Hilgenfeldt, 1999, A simple explanation of light emission in sonoluminescence, Nature, 398, 402, 10.1038/18842
Matula, 1995, Comparison of multibubble and single-bubble sonoluminescence spectra, Phys. Rev. Lett., 75, 2602, 10.1103/PhysRevLett.75.2602
Putterman, 2000, Sonoluminescence: how bubbles turn sound into light, AnRFM, 32, 445
Matsumoto, 2008, Characterization of various TiO2 powders used for complete decomposition of organic wastes by means of thermally excited holes at high temperatures, J. Chem. Eng. Jpn., 41, 51, 10.1252/jcej.07WE229
Matsumoto, 2008, Hydrogen production from methanol or methane by the use of thermally generated holes in TiO2, J. Chem. Eng. Jpn., 41, 57, 10.1252/jcej.07we234
Mizuguchi, 2004, Disposal of used optical disks utilizing thermally-excited holes in titanium dioxide at high temperatures: a complete decomposition of polycarbonate, J. Appl. Phys., 96, 3514, 10.1063/1.1784553
Shima, 2011, Instantaneous and complete decomposition of formaldehyde by thermally activated oxide semiconductors, Mater. Trans., 52, 1489, 10.2320/matertrans.M2011062
Ashokkumar, 1997, Sonoluminescence from aqueous alcohol and surfactant solutions, J. Phys. Chem. B, 101, 10845, 10.1021/jp972477b
Skorb, 2016, Effect of cavitation bubble Collapse on the modification of solids: crystallization aspects, Langmuir, 32, 11072, 10.1021/acs.langmuir.6b02842
Ogi, 2002, Activation of TiO2 photocatalyst by single-bubble sonoluminescence for water treatment, Ultrasonics, 40, 649, 10.1016/S0041-624X(02)00191-9
Nakajima, 2007, Effect of TiO2 powder addition on sonochemical destruction of 1,4-dioxane in aqueous systems, Ultrason. Sonochem., 14, 197, 10.1016/j.ultsonch.2006.06.001
Dadjour, 2005, Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO2, Biochem. Eng. J., 25, 243, 10.1016/j.bej.2005.04.028
Farshbaf Dadjour, 2006, Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2, Water Res., 40, 1137, 10.1016/j.watres.2005.12.047
Ogino, 2006, Enhancement of sonocatalytic cell lysis of Escherichia coli in the presence of TiO2, Biochem. Eng. J., 32, 100, 10.1016/j.bej.2006.09.008
Shimizu, 2008, Sonocatalytic facilitation of hydroxyl radical generation in the presence of TiO2, Ultrason. Sonochem., 15, 988, 10.1016/j.ultsonch.2008.04.011
Her, 2011, Comparative study of sonocatalytic enhancement for removal of bisphenol A and 17α-Ethinyl Estradiol, Ind. Eng. Chem. Res., 50, 6638, 10.1021/ie102419v
Her, 2011, Sonochemical enhancement of hydrogen peroxide production by inert glass beads and TiO2-coated glass beads in water, Chem. Eng. J., 166, 184, 10.1016/j.cej.2010.10.059
Park, 2011, Ultrasonic degradation of endocrine disrupting compounds in seawater and brackish Water, Environ. Eng. Res., 16, 137, 10.4491/eer.2011.16.3.137
Park, 2011, Sonocatalytic degradation of bisphenol A and 17α-ethinyl estradiol in the presence of stainless steel wire mesh catalyst in aqueous solution, Sep. Purif. Technol., 78, 228, 10.1016/j.seppur.2011.02.007
Nakui, 2007, Effect of coal ash on sonochemical degradation of phenol in water, Ultrason. Sonochem., 14, 191, 10.1016/j.ultsonch.2006.04.003
Nakui, 2009, Sonochemical decomposition of hydrazine in water: effects of coal ash and pH on the decomposition and adsorption behavior, Chemosphere, 76, 716, 10.1016/j.chemosphere.2009.04.040
Nakui, 2008, Effect of coal ash on hydrazine degradation under stirring and ultrasonic irradiation conditions, Ultrason. Sonochem., 15, 472, 10.1016/j.ultsonch.2007.05.003
Zhang, 2007, Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation, J. Hazard. Mater., 147, 325, 10.1016/j.jhazmat.2006.12.083
Im, 2013, Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes, J. Hazard. Mater., 254–255, 284, 10.1016/j.jhazmat.2013.04.001
Chen, 2016, Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution, J. Hazard. Mater., 310, 226, 10.1016/j.jhazmat.2016.02.049
Papadaki, 2004, Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents, Sep. Purif. Technol., 34, 35, 10.1016/S1383-5866(03)00172-2
Entezari, 2007, Sono-sorption as a new method for the removal of methylene blue from aqueous solution, Ultrason. Sonochem., 14, 599, 10.1016/j.ultsonch.2006.10.004
Zouaghi, 2011, Sonochemical and sonocatalytic degradation of monolinuron in water, Ultrason. Sonochem., 18, 1107, 10.1016/j.ultsonch.2011.03.008
Oh, 1999, A bodel of bubble nucleation on a micro line heater, J. Heat Transfer, 121, 220, 10.1115/1.2825950
Wang, 2012, Investigation of the heterogeneous nucleation on fractal surfaces, J. Mater. Sci. Technol., 28, 1169, 10.1016/S1005-0302(12)60188-1
Hedges, 2012, Patterning a surface so as to speed nucleation from solution, Soft Matter, 8, 8624, 10.1039/c2sm26038g
Giacomello, 2013, Geometry as a catalyst: how vapor cavities nucleate from defects, Langmuir, 29, 14873, 10.1021/la403733a
Wang, 2005, Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase, Ultrason. Sonochem., 12, 331, 10.1016/j.ultsonch.2004.05.002
Wang, 2006, Investigation on the sonocatalytic degradation of parathion in the presence of nanometer rutile titanium dioxide (TiO2) catalyst, J. Hazard. Mater., 137, 972, 10.1016/j.jhazmat.2006.03.022
Priya, 2006, Kinetics of TiO2-catalyzed ultrasonic degradation of rhodamine dyes, Ind. Eng. Chem. Res., 45, 913, 10.1021/ie050966p
Wang, 2006, Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities, Ultrason. Sonochem., 13, 493, 10.1016/j.ultsonch.2005.11.002
Wang, 2007, Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors, Desalination, 216, 196, 10.1016/j.desal.2006.11.024
Wang, 2007, Investigation on the transition crystal of ordinary rutile TiO2 powder by microwave irradiation in hydrogen peroxide solution and its sonocatalytic activity, Ultrason. Sonochem., 14, 575, 10.1016/j.ultsonch.2006.11.006
Wang, 2007, Investigation on transition crystal of ordinary rutile TiO2 powder and its sonocatalytic activity, Ultrason. Sonochem., 14, 246, 10.1016/j.ultsonch.2006.05.003
Abbasi, 2008, Sonochemical degradation of Basic Blue 41 dye assisted by nano TiO2 and H2O2, J. Hazard. Mater., 153, 942, 10.1016/j.jhazmat.2007.09.045
Wang, 2008, Treatment of nano-sized rutile phase TiO2 powder under ultrasonic irradiation in hydrogen peroxide solution and investigation of its sonocatalytic activity, Ultrason. Sonochem., 15, 301, 10.1016/j.ultsonch.2007.07.001
Abdullah, 2010, Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution, J. Hazard. Mater., 173, 159, 10.1016/j.jhazmat.2009.08.060
Nalini Vijaya Laxmi, 2010, Sonochemical degradation of 2chloro-5methyl phenol assisted by TiO2 and H2O2, J. Hazard. Mater., 174, 151, 10.1016/j.jhazmat.2009.09.029
Eren, 2010, Sonolytic and sonocatalytic degradation of azo dyes by low and high frequency ultrasound, J. Hazard. Mater., 177, 1019, 10.1016/j.jhazmat.2010.01.021
Song, 2012, Synthesis of porous and trigonal TiO2 nanoflake, its high activity for sonocatalytic degradation of rhodamine B and kinetic analysis, Ultrason. Sonochem., 19, 1169, 10.1016/j.ultsonch.2012.03.011
Mishra, 2012, Ultrasonic degradation of p-nitrophenol in the presence of additives at pilot scale capacity, Ind. Eng. Chem. Res., 51, 1166, 10.1021/ie2023806
Andersson, 2002, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B, 106, 10674, 10.1021/jp025715y
Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013
Pang, 2010, Effect of annealing temperature on the characteristics, sonocatalytic activity and reusability of nanotubes TiO2 in the degradation of Rhodamine B, Appl. Catal. B: Environ., 100, 393, 10.1016/j.apcatb.2010.08.016
Pang, 2011, Optimization of sonocatalytic degradation of Rhodamine B in aqueous solution in the presence of TiO2 nanotubes using response surface methodology, Chem. Eng. J., 166, 873, 10.1016/j.cej.2010.11.059
Pang, 2011, Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution, Sep. Purif. Technol., 77, 331, 10.1016/j.seppur.2010.12.023
Pang, 2012, Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2, Ultrason. Sonochem., 19, 642, 10.1016/j.ultsonch.2011.09.007
Daraei, 2014, Synthesis of ZnO nano-sono-catalyst for degradation of reactive dye focusing on energy consumption: operational parameters influence, modeling, and optimization, Desalin Water Treat., 52, 6745, 10.1080/19443994.2013.821040
Wang, 2008, Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation, Ultrason. Sonochem., 15, 768, 10.1016/j.ultsonch.2008.02.002
Wang, 2009, Study on inorganic oxidants assisted sonocatalytic degradation of Acid Red B in presence of nano-sized ZnO powder, Sep. Purif. Technol., 67, 38, 10.1016/j.seppur.2009.03.005
Song, 2012, Porous BiOI sonocatalysts: hydrothermal synthesis, characterization, sonocatalytic, and kinetic properties, Ind. Eng. Chem. Res., 51, 1193, 10.1021/ie201753a
Wu, 2013, Sonocatalytic performance of AgBr in the degradation of organic dyes in aqueous solution, Catal. Commun., 37, 14, 10.1016/j.catcom.2013.03.027
Chen, 2016, Sonocatalytic degradation of Rhodamine B catalyzed by β-Bi2O3 particles under ultrasonic irradiation, Ultrason. Sonochem., 29, 172, 10.1016/j.ultsonch.2015.08.010
Zhang, 2016, Preparation of cube micrometer potassium niobate (KNbO3) by hydrothermal method and sonocatalytic degradation of organic dye, Ultrason. Sonochem., 30, 61, 10.1016/j.ultsonch.2015.11.003
He, 2016, Sonochemical degradation of methyl orange in the presence of Bi2WO6: effect of operating parameters and the generated reactive oxygen species, Ultrason. Sonochem., 33, 90, 10.1016/j.ultsonch.2016.04.028
Zhou, 2015, Sonocatalytic degradation of RhB over LuFeO3 particles under ultrasonic irradiation, J. Hazard. Mater., 289, 149, 10.1016/j.jhazmat.2015.02.054
Kumar, 2011, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115, 13211, 10.1021/jp204364a
Pelaez, 2012, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, 331, 10.1016/j.apcatb.2012.05.036
Li, 2014, A perspective on mesoporous TiO2 materials, Chem. Mater., 26, 287, 10.1021/cm4014859
Wang, 2008, Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation, J. Colloid Interface Sci., 320, 202, 10.1016/j.jcis.2007.12.013
Wang, 2009, Sonocatalytic degradation of azo fuchsine in the presence of the Co-doped and Cr-doped mixed crystal TiO2 powders and comparison of their sonocatalytic activities, J. Hazard. Mater., 170, 398, 10.1016/j.jhazmat.2009.04.083
Pang, 2012, Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water, J. Hazard. Mater., 235–236, 326, 10.1016/j.jhazmat.2012.08.008
Pang, 2013, Fe3+ doped TiO2 nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater, Appl. Catal. B: Environ., 129, 473, 10.1016/j.apcatb.2012.09.051
Bingham, 2011, Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping, J. Mater. Chem., 21, 2041, 10.1039/C0JM02271C
Sathishkumar, 2014, Low frequency ultrasound (42 kHz) assisted degradation of Acid Blue 113 in the presence of visible light driven rare earth nanoclusters loaded TiO2 nanophotocatalysts, Ultrason. Sonochem., 21, 1675, 10.1016/j.ultsonch.2014.03.004
Khataee, 2015, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process, Ultrason. Sonochem., 23, 219, 10.1016/j.ultsonch.2014.08.023
Khataee, 2015, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17, Ultrason. Sonochem., 22, 371, 10.1016/j.ultsonch.2014.05.023
Khataee, 2016, Development of an empirical kinetic model for sonocatalytic process using neodymium doped zinc oxide nanoparticles, Ultrason. Sonochem., 29, 146, 10.1016/j.ultsonch.2015.09.004
Khataee, 2016, Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures, Ultrason. Sonochem., 29, 27, 10.1016/j.ultsonch.2015.07.026
Khataee, 2015, Sonocatalytic performance of Er-doped ZnO for degradation of a textile dye, Ultrason. Sonochem., 27, 379, 10.1016/j.ultsonch.2015.06.010
Eskandarloo, 2016, Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants, Ultrason. Sonochem., 28, 169, 10.1016/j.ultsonch.2015.07.012
Eunju, 2013, Sonochemical degradation of reactive black 5 with a composite catalyst of TiO2/single-walled carbon nanotubes, Japan. J. Appl. Phys., 52
Gomathi Devi, 2014, Review on modified N-TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms, RSC Adv., 4, 28265, 10.1039/C4RA03291H
Pang, 2013, Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water, Chem. Eng. J., 214, 129, 10.1016/j.cej.2012.10.036
Eskandarloo, 2015, Ultrasonic-assisted sol–gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency, Ultrason. Sonochem., 26, 281, 10.1016/j.ultsonch.2015.02.001
Zhang, 2012, Synergistic effects of C-Cr codoping in TiO2 and enhanced sonocatalytic activity under ultrasonic irradiation, Ultrason. Sonochem., 19, 767, 10.1016/j.ultsonch.2011.12.016
Wang, 2008, Enhanced sonocatalytic degradation of azo dyes by Au/TiO2, Environ. Sci. Technol., 42, 6173, 10.1021/es800168k
Wang, 2010, Sonochemical hydrogen production efficiently catalyzed by Au/TiO2, J. Phys. Chem. C, 114, 17728, 10.1021/jp105691v
Tan, 2016, Understanding Plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold, ACS Catal., 6, 1870, 10.1021/acscatal.5b02785
Chave, 2015, Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO2, Catal. Today, 241, 55, 10.1016/j.cattod.2014.07.040
Wang, 2017, Preparation of a novel sonocatalyst, Au/NiGa2O4-Au-Bi2O3 nanocomposite, and application in sonocatalytic degradation of organic pollutants, Ultrason. Sonochem., 38, 335, 10.1016/j.ultsonch.2017.03.031
Rawal, 2013, Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency, Catal. Sci. Technol., 3, 1822, 10.1039/c3cy00004d
Ghows, 2011, Exceptional catalytic efficiency in mineralization of the reactive textile azo dye (RB5) by a combination of ultrasound and core–shell nanoparticles (CdS/TiO2), J. Hazard. Mater., 195, 132, 10.1016/j.jhazmat.2011.08.049
Wang, 2010, Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation, Ultrason. Sonochem., 17, 642, 10.1016/j.ultsonch.2009.12.016
Min, 2012, Sonodegradation and photodegradation of methyl orange by InVO4/TiO2 nanojunction composites under ultrasonic and visible light irradiation, Ultrason. Sonochem., 19, 883, 10.1016/j.ultsonch.2011.12.015
Song, 2011, Sonocatalytic performance of Tb7O12/TiO2 composite under ultrasonic irradiation, Ultrason. Sonochem., 18, 713, 10.1016/j.ultsonch.2010.11.019
Zou, 2013, Spectroscopic analyses on ROS generation catalyzed by TiO2, CeO2/TiO2 and Fe2O3/TiO2 under ultrasonic and visible-light irradiation, Spectrochim, Acta Part A: Mol. Biomol. Spectrosc., 101, 82, 10.1016/j.saa.2012.09.067
Pang, 2016, Synthesis, characteristics and sonocatalytic activities of calcined γ-Fe2O3 and TiO2 nanotubes/γ-Fe2O3 magnetic catalysts in the degradation of Orange G, Ultrason. Sonochem., 317–327
Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892
Lee, 2015, One-step formation of WO3-loaded TiO2 nanotubes composite film for high photocatalytic performance, Materials, 8, 2139, 10.3390/ma8052139
Yang, 2014, Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications, J. Mater. Chem. A, 2, 1750, 10.1039/C3TA14286H
Ni, 2007, A review and recent developments in photocatalytic water-splitting using for hydrogen production, Renew. Sustainable Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009
Zhu, 2015, Rapid sonochemical synthesis of novel PbSe–graphene–TiO2 composite sonocatalysts with enhanced on decolorization performance and generation of ROS, Ultrason. Sonochem., 27, 252, 10.1016/j.ultsonch.2015.05.037
Nuengmatcha, 2016, Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation, Dyes Pigm., 134, 487, 10.1016/j.dyepig.2016.08.006
Areeroba, 2018, Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@SiO2 nanocomposites, Ultrason. Sonochem., 41, 267, 10.1016/j.ultsonch.2017.09.034
Zhu, 2013, Characterization and relative sonocatalytic efficiencies of a new MWCNT and CdS modified TiO2 catalysts and their application in the sonocatalytic degradation of rhodamine B, Ultrason. Sonochem., 20, 478, 10.1016/j.ultsonch.2012.08.005
Meng, 2012, Sonocatalytic degradation of Rhodamine B in the presence of C60 and CdS coupled TiO2 particles, Ultrason. Sonochem., 19, 143, 10.1016/j.ultsonch.2011.05.006
Yin, 2011, Enhancement of sonocatalytic performance of TiO2 by coating Er3+:YAlO3 in azo dye degradation, Sep. Purif. Technol., 81, 94, 10.1016/j.seppur.2011.07.014
Gao, 2011, The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation, Ultrason. Sonochem., 18, 541, 10.1016/j.ultsonch.2010.09.012
Zhai, 2013, Effective sonocatalytic degradation of organic dyes by using Er3+:YAlO3/TiO2–SnO2 under ultrasonic irradiation, J. Mol. Catal. A: Chem., 366, 282, 10.1016/j.molcata.2012.10.006
Li, 2017, Preparation of (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) nanocatalysts and application in sonocatalytic decomposition of ametryn in aqueous solution, Ultrason. Sonochem., 34, 763, 10.1016/j.ultsonch.2016.07.009
Qiu, 2016, Mesoporous TiO2 encapsulating a visible-light responsive upconversion agent for enhanced sonocatalytic degradation of bisphenol-A, RSC Adv., 6, 37434, 10.1039/C6RA01689H
Wang, 2006, Investigation on degradation of dyestuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent, J. Photochem. Photobiol. A: Chem., 180, 189, 10.1016/j.jphotochem.2005.10.016
Chen, 2014, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics, Chem. Rev., 114, 5161, 10.1021/cr400425h
Zhang, 2016, Preparation of Er3+:Y3Al5O12/KNbO3 composite and application ininnocent treatment of ketamine by using sonocatalytic decomposition method, J. Hazard. Mater., 317, 667, 10.1016/j.jhazmat.2016.03.097
Wang, 2017, Photocatalytic conversion of nitrite in aqueous solution over nanocomposite photocatalyst Er3+:Y3Al5O12/BiPO4 using different photosources, J. Ind. Eng. Chem., 47, 74, 10.1016/j.jiec.2016.11.016
Zhang, 2017, Preparation of Er3+:Y3Al5O12/WO3-KNbO3 composite and application in treatment of methamphetamine under ultrasonic irradiation, Ultrason. Sonochem., 35, 478, 10.1016/j.ultsonch.2016.11.004
Huang, 2017, Hydrothermal-precipitation preparation of CdS@(Er3+:Y3Al5O12/ZrO2) coated composite and sonocatalytic degradation of caffeine, Ultrason. Sonochem., 37, 222, 10.1016/j.ultsonch.2017.01.009
Zhang, 2012, Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW), J. Hazard. Mater., 209–210, 271, 10.1016/j.jhazmat.2012.01.021
Kubo, 2007, Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon, Ind. Eng. Chem. Res., 46, 699, 10.1021/ie0607999
Qiu, 2014, Ordered mesoporous C/TiO2 composites as advanced sonocatalysts, J. Mater. Chem. A, 2, 16452, 10.1039/C4TA03455D
Lei, 2012, Enhanced sonocatalytic degradation of Rhodamine B by graphene-TiO2 composites synthesized by an ultrasonic-assisted method, Chin. J. Catal., 33, 1276, 10.1016/S1872-2067(11)60430-0
Karaca, 2016, Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite, Ultrason. Sonochem., 31, 250, 10.1016/j.ultsonch.2016.01.009
Hassani, 2017, Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite, Ultrason. Sonochem., 35, 251, 10.1016/j.ultsonch.2016.09.027
Darvishi Cheshmeh Soltani, 2016, Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: response surface methodological approach, J. Environ. Manage., 179, 47, 10.1016/j.jenvman.2016.05.001
Darvishi Cheshmeh Soltani, 2016, Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase, Ultrason. Sonochem., 28, 69, 10.1016/j.ultsonch.2015.07.002
Qiu, 2015, Uniform core-shell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A, J. Mater. Chem. A, 3, 6492, 10.1039/C4TA06891B
Kang, 2015, Enhanced sonocatalytic treatment of ibuprofen by mechanical mixing and reusable magnetic core titanium dioxide, Chem. Eng. J., 264, 522, 10.1016/j.cej.2014.10.106
Khataee, 2017, Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar, Ultrason. Sonochem., 35, 72, 10.1016/j.ultsonch.2016.09.004
Mills, 1993, Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the initial kinetics of carbon dioxide photogeneration, J. Photochem. Photobiol. A: Chem., 71, 75, 10.1016/1010-6030(93)87012-C