A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism

Ultrasonics Sonochemistry - Tập 45 - Trang 29-49 - 2018
Pengpeng Qiu1, Beomguk Park1, Jongbok Choi1, Binota Thokchom2, Aniruddha B. Pandit3, Jeehyeong Khim1
1School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea
2Indian Institute of Technology Guwahati, Guwahati 781039, India
3Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 40019, India

Tài liệu tham khảo

Hua, 1996, Kinetics and mechanism of the sonolytic degradation of CCl4: intermediates and byproducts, Environ. Sci. Technol., 30, 864, 10.1021/es9502942 Chowdhury, 2009, Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes – a review, Sci. Total Environ., 407, 2474, 10.1016/j.scitotenv.2008.12.031 Ferkous, 2015, Sonochemical degradation of naphthol blue black in water: effect of operating parameters, Ultrason. Sonochem., 26, 40, 10.1016/j.ultsonch.2015.03.013 Balachandran, 2016, Understanding acoustic cavitation for sonolytic degradation of p-cresol as a model contaminant, Chemosphere, 147, 52, 10.1016/j.chemosphere.2015.12.066 Serna-Galvis, 2015, Sonochemical degradation of the pharmaceutical fluoxetine: effect of parameters, organic and inorganic additives and combination with a biological system, Sci. Total Environ., 524–525, 354, 10.1016/j.scitotenv.2015.04.053 Goskonda, 2002, Sonochemical degradation of aromatic organic pollutants, Waste Manage. (Oxford), 22, 351, 10.1016/S0956-053X(01)00035-6 Sivasankar, 2009, Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics, Ultrason. Sonochem., 16, 769, 10.1016/j.ultsonch.2009.02.009 Suslick, 1990, On the origin of sonoluminescence and sonochemistry, Ultrasonics, 28, 280, 10.1016/0041-624X(90)90033-K Yasui, 2008, The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions, J. Chem. Phys., 128, 184705, 10.1063/1.2919119 Suslick, 1999, Acoustic cavitation and its chemical consequences, Philos. Trans. R. Soc. London Series A, 357, 335, 10.1098/rsta.1999.0330 Lifka, 2003, The use of ultrasound for the degradation of pollutants in water: aquasonolysis – a review, Eng. Life Sci., 3, 253, 10.1002/elsc.200390040 Petrier, 1998, Ultrasound and environment: Sonochemical destruction of chloroaromatic derivatives, Environ. Sci. Technol., 32, 1316, 10.1021/es970662x Mahamuni, 2010, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation, Ultrason. Sonochem., 17, 990, 10.1016/j.ultsonch.2009.09.005 Pang, 2011, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater, Desalination, 277, 1, 10.1016/j.desal.2011.04.049 Eren, 2012, Ultrasound as a basic and auxiliary process for dye remediation: a review, J. Environ. Manage., 104, 127, 10.1016/j.jenvman.2012.03.028 Doktycz, 1990, Interparticle collisions driven by ultrasound, Science, 247, 1067, 10.1126/science.2309118 Gerth, 1980, Heterogeneous nucleation of bubbles at solid surfaces in gas-supersaturated aqueous solutions, J. Colloid Interf. Sci., 74, 80, 10.1016/0021-9797(80)90172-1 Mørch, 2007, Reflections on cavitation nuclei in water, Phys. Fluids, 19, 072104, 10.1063/1.2747210 Shchukin, 2011, Ultrasonic cavitation at solid surfaces, Adv. Mater., 23, 1922, 10.1002/adma.201004494 Bremond, 2006, Controlled multibubble surface cavitation, Phys. Rev. Lett., 96, 224501, 10.1103/PhysRevLett.96.224501 Maksimov, 2013, Heterogeneous vapor bubble nucleation on a rough surface, Langmuir, 29, 3924, 10.1021/la400340y Yuan, 2016, Heterogeneous bubble nucleation on heated surface from insoluble gas, Int. J. Heat Mass Transfer, 101, 1185, 10.1016/j.ijheatmasstransfer.2016.05.138 Belova, 2010, Selective ultrasonic cavitation on patterned hydrophobic surfaces, Angew. Chem. Int. Ed., 49, 7129, 10.1002/anie.201002069 Zhang, 2014, Controlled cavitation at nano/microparticle surfaces, Chem. Mater., 26, 2244, 10.1021/cm404194n Melmed, 1966, Influence of adsorbed gas on surface diffusion and nucleation, J. Appl. Phys., 37, 275, 10.1063/1.1707825 Roldugin, 2002, Heterogeneous nucleation on fractal surfaces, DokPC, 383, 84 Hedges, 2013, Selective nucleation in porous media, Soft Matter, 9, 9763, 10.1039/c3sm51946e Belova, 2011, Ontrolled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces, ACS Appl. Mater. Interfaces, 3, 417, 10.1021/am101006x Hiller, 1998, Time-resolved spectra of sonoluminescence, Phys. Rev. Lett., 80, 1090, 10.1103/PhysRevLett.80.1090 Hilgenfeldt, 1999, A simple explanation of light emission in sonoluminescence, Nature, 398, 402, 10.1038/18842 Matula, 1995, Comparison of multibubble and single-bubble sonoluminescence spectra, Phys. Rev. Lett., 75, 2602, 10.1103/PhysRevLett.75.2602 Putterman, 2000, Sonoluminescence: how bubbles turn sound into light, AnRFM, 32, 445 Matsumoto, 2008, Characterization of various TiO2 powders used for complete decomposition of organic wastes by means of thermally excited holes at high temperatures, J. Chem. Eng. Jpn., 41, 51, 10.1252/jcej.07WE229 Matsumoto, 2008, Hydrogen production from methanol or methane by the use of thermally generated holes in TiO2, J. Chem. Eng. Jpn., 41, 57, 10.1252/jcej.07we234 Mizuguchi, 2004, Disposal of used optical disks utilizing thermally-excited holes in titanium dioxide at high temperatures: a complete decomposition of polycarbonate, J. Appl. Phys., 96, 3514, 10.1063/1.1784553 Shima, 2011, Instantaneous and complete decomposition of formaldehyde by thermally activated oxide semiconductors, Mater. Trans., 52, 1489, 10.2320/matertrans.M2011062 Ashokkumar, 1997, Sonoluminescence from aqueous alcohol and surfactant solutions, J. Phys. Chem. B, 101, 10845, 10.1021/jp972477b Skorb, 2016, Effect of cavitation bubble Collapse on the modification of solids: crystallization aspects, Langmuir, 32, 11072, 10.1021/acs.langmuir.6b02842 Ogi, 2002, Activation of TiO2 photocatalyst by single-bubble sonoluminescence for water treatment, Ultrasonics, 40, 649, 10.1016/S0041-624X(02)00191-9 Nakajima, 2007, Effect of TiO2 powder addition on sonochemical destruction of 1,4-dioxane in aqueous systems, Ultrason. Sonochem., 14, 197, 10.1016/j.ultsonch.2006.06.001 Dadjour, 2005, Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO2, Biochem. Eng. J., 25, 243, 10.1016/j.bej.2005.04.028 Farshbaf Dadjour, 2006, Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2, Water Res., 40, 1137, 10.1016/j.watres.2005.12.047 Ogino, 2006, Enhancement of sonocatalytic cell lysis of Escherichia coli in the presence of TiO2, Biochem. Eng. J., 32, 100, 10.1016/j.bej.2006.09.008 Shimizu, 2008, Sonocatalytic facilitation of hydroxyl radical generation in the presence of TiO2, Ultrason. Sonochem., 15, 988, 10.1016/j.ultsonch.2008.04.011 Her, 2011, Comparative study of sonocatalytic enhancement for removal of bisphenol A and 17α-Ethinyl Estradiol, Ind. Eng. Chem. Res., 50, 6638, 10.1021/ie102419v Her, 2011, Sonochemical enhancement of hydrogen peroxide production by inert glass beads and TiO2-coated glass beads in water, Chem. Eng. J., 166, 184, 10.1016/j.cej.2010.10.059 Park, 2011, Ultrasonic degradation of endocrine disrupting compounds in seawater and brackish Water, Environ. Eng. Res., 16, 137, 10.4491/eer.2011.16.3.137 Park, 2011, Sonocatalytic degradation of bisphenol A and 17α-ethinyl estradiol in the presence of stainless steel wire mesh catalyst in aqueous solution, Sep. Purif. Technol., 78, 228, 10.1016/j.seppur.2011.02.007 Nakui, 2007, Effect of coal ash on sonochemical degradation of phenol in water, Ultrason. Sonochem., 14, 191, 10.1016/j.ultsonch.2006.04.003 Nakui, 2009, Sonochemical decomposition of hydrazine in water: effects of coal ash and pH on the decomposition and adsorption behavior, Chemosphere, 76, 716, 10.1016/j.chemosphere.2009.04.040 Nakui, 2008, Effect of coal ash on hydrazine degradation under stirring and ultrasonic irradiation conditions, Ultrason. Sonochem., 15, 472, 10.1016/j.ultsonch.2007.05.003 Zhang, 2007, Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation, J. Hazard. Mater., 147, 325, 10.1016/j.jhazmat.2006.12.083 Im, 2013, Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes, J. Hazard. Mater., 254–255, 284, 10.1016/j.jhazmat.2013.04.001 Chen, 2016, Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution, J. Hazard. Mater., 310, 226, 10.1016/j.jhazmat.2016.02.049 Papadaki, 2004, Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents, Sep. Purif. Technol., 34, 35, 10.1016/S1383-5866(03)00172-2 Entezari, 2007, Sono-sorption as a new method for the removal of methylene blue from aqueous solution, Ultrason. Sonochem., 14, 599, 10.1016/j.ultsonch.2006.10.004 Zouaghi, 2011, Sonochemical and sonocatalytic degradation of monolinuron in water, Ultrason. Sonochem., 18, 1107, 10.1016/j.ultsonch.2011.03.008 Oh, 1999, A bodel of bubble nucleation on a micro line heater, J. Heat Transfer, 121, 220, 10.1115/1.2825950 Wang, 2012, Investigation of the heterogeneous nucleation on fractal surfaces, J. Mater. Sci. Technol., 28, 1169, 10.1016/S1005-0302(12)60188-1 Hedges, 2012, Patterning a surface so as to speed nucleation from solution, Soft Matter, 8, 8624, 10.1039/c2sm26038g Giacomello, 2013, Geometry as a catalyst: how vapor cavities nucleate from defects, Langmuir, 29, 14873, 10.1021/la403733a Wang, 2005, Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase, Ultrason. Sonochem., 12, 331, 10.1016/j.ultsonch.2004.05.002 Wang, 2006, Investigation on the sonocatalytic degradation of parathion in the presence of nanometer rutile titanium dioxide (TiO2) catalyst, J. Hazard. Mater., 137, 972, 10.1016/j.jhazmat.2006.03.022 Priya, 2006, Kinetics of TiO2-catalyzed ultrasonic degradation of rhodamine dyes, Ind. Eng. Chem. Res., 45, 913, 10.1021/ie050966p Wang, 2006, Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities, Ultrason. Sonochem., 13, 493, 10.1016/j.ultsonch.2005.11.002 Wang, 2007, Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors, Desalination, 216, 196, 10.1016/j.desal.2006.11.024 Wang, 2007, Investigation on the transition crystal of ordinary rutile TiO2 powder by microwave irradiation in hydrogen peroxide solution and its sonocatalytic activity, Ultrason. Sonochem., 14, 575, 10.1016/j.ultsonch.2006.11.006 Wang, 2007, Investigation on transition crystal of ordinary rutile TiO2 powder and its sonocatalytic activity, Ultrason. Sonochem., 14, 246, 10.1016/j.ultsonch.2006.05.003 Abbasi, 2008, Sonochemical degradation of Basic Blue 41 dye assisted by nano TiO2 and H2O2, J. Hazard. Mater., 153, 942, 10.1016/j.jhazmat.2007.09.045 Wang, 2008, Treatment of nano-sized rutile phase TiO2 powder under ultrasonic irradiation in hydrogen peroxide solution and investigation of its sonocatalytic activity, Ultrason. Sonochem., 15, 301, 10.1016/j.ultsonch.2007.07.001 Abdullah, 2010, Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution, J. Hazard. Mater., 173, 159, 10.1016/j.jhazmat.2009.08.060 Nalini Vijaya Laxmi, 2010, Sonochemical degradation of 2chloro-5methyl phenol assisted by TiO2 and H2O2, J. Hazard. Mater., 174, 151, 10.1016/j.jhazmat.2009.09.029 Eren, 2010, Sonolytic and sonocatalytic degradation of azo dyes by low and high frequency ultrasound, J. Hazard. Mater., 177, 1019, 10.1016/j.jhazmat.2010.01.021 Song, 2012, Synthesis of porous and trigonal TiO2 nanoflake, its high activity for sonocatalytic degradation of rhodamine B and kinetic analysis, Ultrason. Sonochem., 19, 1169, 10.1016/j.ultsonch.2012.03.011 Mishra, 2012, Ultrasonic degradation of p-nitrophenol in the presence of additives at pilot scale capacity, Ind. Eng. Chem. Res., 51, 1166, 10.1021/ie2023806 Andersson, 2002, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B, 106, 10674, 10.1021/jp025715y Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013 Pang, 2010, Effect of annealing temperature on the characteristics, sonocatalytic activity and reusability of nanotubes TiO2 in the degradation of Rhodamine B, Appl. Catal. B: Environ., 100, 393, 10.1016/j.apcatb.2010.08.016 Pang, 2011, Optimization of sonocatalytic degradation of Rhodamine B in aqueous solution in the presence of TiO2 nanotubes using response surface methodology, Chem. Eng. J., 166, 873, 10.1016/j.cej.2010.11.059 Pang, 2011, Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution, Sep. Purif. Technol., 77, 331, 10.1016/j.seppur.2010.12.023 Pang, 2012, Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2, Ultrason. Sonochem., 19, 642, 10.1016/j.ultsonch.2011.09.007 Daraei, 2014, Synthesis of ZnO nano-sono-catalyst for degradation of reactive dye focusing on energy consumption: operational parameters influence, modeling, and optimization, Desalin Water Treat., 52, 6745, 10.1080/19443994.2013.821040 Wang, 2008, Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation, Ultrason. Sonochem., 15, 768, 10.1016/j.ultsonch.2008.02.002 Wang, 2009, Study on inorganic oxidants assisted sonocatalytic degradation of Acid Red B in presence of nano-sized ZnO powder, Sep. Purif. Technol., 67, 38, 10.1016/j.seppur.2009.03.005 Song, 2012, Porous BiOI sonocatalysts: hydrothermal synthesis, characterization, sonocatalytic, and kinetic properties, Ind. Eng. Chem. Res., 51, 1193, 10.1021/ie201753a Wu, 2013, Sonocatalytic performance of AgBr in the degradation of organic dyes in aqueous solution, Catal. Commun., 37, 14, 10.1016/j.catcom.2013.03.027 Chen, 2016, Sonocatalytic degradation of Rhodamine B catalyzed by β-Bi2O3 particles under ultrasonic irradiation, Ultrason. Sonochem., 29, 172, 10.1016/j.ultsonch.2015.08.010 Zhang, 2016, Preparation of cube micrometer potassium niobate (KNbO3) by hydrothermal method and sonocatalytic degradation of organic dye, Ultrason. Sonochem., 30, 61, 10.1016/j.ultsonch.2015.11.003 He, 2016, Sonochemical degradation of methyl orange in the presence of Bi2WO6: effect of operating parameters and the generated reactive oxygen species, Ultrason. Sonochem., 33, 90, 10.1016/j.ultsonch.2016.04.028 Zhou, 2015, Sonocatalytic degradation of RhB over LuFeO3 particles under ultrasonic irradiation, J. Hazard. Mater., 289, 149, 10.1016/j.jhazmat.2015.02.054 Kumar, 2011, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115, 13211, 10.1021/jp204364a Pelaez, 2012, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, 331, 10.1016/j.apcatb.2012.05.036 Li, 2014, A perspective on mesoporous TiO2 materials, Chem. Mater., 26, 287, 10.1021/cm4014859 Wang, 2008, Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation, J. Colloid Interface Sci., 320, 202, 10.1016/j.jcis.2007.12.013 Wang, 2009, Sonocatalytic degradation of azo fuchsine in the presence of the Co-doped and Cr-doped mixed crystal TiO2 powders and comparison of their sonocatalytic activities, J. Hazard. Mater., 170, 398, 10.1016/j.jhazmat.2009.04.083 Pang, 2012, Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water, J. Hazard. Mater., 235–236, 326, 10.1016/j.jhazmat.2012.08.008 Pang, 2013, Fe3+ doped TiO2 nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater, Appl. Catal. B: Environ., 129, 473, 10.1016/j.apcatb.2012.09.051 Bingham, 2011, Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping, J. Mater. Chem., 21, 2041, 10.1039/C0JM02271C Sathishkumar, 2014, Low frequency ultrasound (42 kHz) assisted degradation of Acid Blue 113 in the presence of visible light driven rare earth nanoclusters loaded TiO2 nanophotocatalysts, Ultrason. Sonochem., 21, 1675, 10.1016/j.ultsonch.2014.03.004 Khataee, 2015, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process, Ultrason. Sonochem., 23, 219, 10.1016/j.ultsonch.2014.08.023 Khataee, 2015, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17, Ultrason. Sonochem., 22, 371, 10.1016/j.ultsonch.2014.05.023 Khataee, 2016, Development of an empirical kinetic model for sonocatalytic process using neodymium doped zinc oxide nanoparticles, Ultrason. Sonochem., 29, 146, 10.1016/j.ultsonch.2015.09.004 Khataee, 2016, Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures, Ultrason. Sonochem., 29, 27, 10.1016/j.ultsonch.2015.07.026 Khataee, 2015, Sonocatalytic performance of Er-doped ZnO for degradation of a textile dye, Ultrason. Sonochem., 27, 379, 10.1016/j.ultsonch.2015.06.010 Eskandarloo, 2016, Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants, Ultrason. Sonochem., 28, 169, 10.1016/j.ultsonch.2015.07.012 Eunju, 2013, Sonochemical degradation of reactive black 5 with a composite catalyst of TiO2/single-walled carbon nanotubes, Japan. J. Appl. Phys., 52 Gomathi Devi, 2014, Review on modified N-TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms, RSC Adv., 4, 28265, 10.1039/C4RA03291H Pang, 2013, Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water, Chem. Eng. J., 214, 129, 10.1016/j.cej.2012.10.036 Eskandarloo, 2015, Ultrasonic-assisted sol–gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency, Ultrason. Sonochem., 26, 281, 10.1016/j.ultsonch.2015.02.001 Zhang, 2012, Synergistic effects of C-Cr codoping in TiO2 and enhanced sonocatalytic activity under ultrasonic irradiation, Ultrason. Sonochem., 19, 767, 10.1016/j.ultsonch.2011.12.016 Wang, 2008, Enhanced sonocatalytic degradation of azo dyes by Au/TiO2, Environ. Sci. Technol., 42, 6173, 10.1021/es800168k Wang, 2010, Sonochemical hydrogen production efficiently catalyzed by Au/TiO2, J. Phys. Chem. C, 114, 17728, 10.1021/jp105691v Tan, 2016, Understanding Plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold, ACS Catal., 6, 1870, 10.1021/acscatal.5b02785 Chave, 2015, Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO2, Catal. Today, 241, 55, 10.1016/j.cattod.2014.07.040 Wang, 2017, Preparation of a novel sonocatalyst, Au/NiGa2O4-Au-Bi2O3 nanocomposite, and application in sonocatalytic degradation of organic pollutants, Ultrason. Sonochem., 38, 335, 10.1016/j.ultsonch.2017.03.031 Rawal, 2013, Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency, Catal. Sci. Technol., 3, 1822, 10.1039/c3cy00004d Ghows, 2011, Exceptional catalytic efficiency in mineralization of the reactive textile azo dye (RB5) by a combination of ultrasound and core–shell nanoparticles (CdS/TiO2), J. Hazard. Mater., 195, 132, 10.1016/j.jhazmat.2011.08.049 Wang, 2010, Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation, Ultrason. Sonochem., 17, 642, 10.1016/j.ultsonch.2009.12.016 Min, 2012, Sonodegradation and photodegradation of methyl orange by InVO4/TiO2 nanojunction composites under ultrasonic and visible light irradiation, Ultrason. Sonochem., 19, 883, 10.1016/j.ultsonch.2011.12.015 Song, 2011, Sonocatalytic performance of Tb7O12/TiO2 composite under ultrasonic irradiation, Ultrason. Sonochem., 18, 713, 10.1016/j.ultsonch.2010.11.019 Zou, 2013, Spectroscopic analyses on ROS generation catalyzed by TiO2, CeO2/TiO2 and Fe2O3/TiO2 under ultrasonic and visible-light irradiation, Spectrochim, Acta Part A: Mol. Biomol. Spectrosc., 101, 82, 10.1016/j.saa.2012.09.067 Pang, 2016, Synthesis, characteristics and sonocatalytic activities of calcined γ-Fe2O3 and TiO2 nanotubes/γ-Fe2O3 magnetic catalysts in the degradation of Orange G, Ultrason. Sonochem., 317–327 Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892 Lee, 2015, One-step formation of WO3-loaded TiO2 nanotubes composite film for high photocatalytic performance, Materials, 8, 2139, 10.3390/ma8052139 Yang, 2014, Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications, J. Mater. Chem. A, 2, 1750, 10.1039/C3TA14286H Ni, 2007, A review and recent developments in photocatalytic water-splitting using for hydrogen production, Renew. Sustainable Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009 Zhu, 2015, Rapid sonochemical synthesis of novel PbSe–graphene–TiO2 composite sonocatalysts with enhanced on decolorization performance and generation of ROS, Ultrason. Sonochem., 27, 252, 10.1016/j.ultsonch.2015.05.037 Nuengmatcha, 2016, Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation, Dyes Pigm., 134, 487, 10.1016/j.dyepig.2016.08.006 Areeroba, 2018, Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@SiO2 nanocomposites, Ultrason. Sonochem., 41, 267, 10.1016/j.ultsonch.2017.09.034 Zhu, 2013, Characterization and relative sonocatalytic efficiencies of a new MWCNT and CdS modified TiO2 catalysts and their application in the sonocatalytic degradation of rhodamine B, Ultrason. Sonochem., 20, 478, 10.1016/j.ultsonch.2012.08.005 Meng, 2012, Sonocatalytic degradation of Rhodamine B in the presence of C60 and CdS coupled TiO2 particles, Ultrason. Sonochem., 19, 143, 10.1016/j.ultsonch.2011.05.006 Yin, 2011, Enhancement of sonocatalytic performance of TiO2 by coating Er3+:YAlO3 in azo dye degradation, Sep. Purif. Technol., 81, 94, 10.1016/j.seppur.2011.07.014 Gao, 2011, The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation, Ultrason. Sonochem., 18, 541, 10.1016/j.ultsonch.2010.09.012 Zhai, 2013, Effective sonocatalytic degradation of organic dyes by using Er3+:YAlO3/TiO2–SnO2 under ultrasonic irradiation, J. Mol. Catal. A: Chem., 366, 282, 10.1016/j.molcata.2012.10.006 Li, 2017, Preparation of (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) nanocatalysts and application in sonocatalytic decomposition of ametryn in aqueous solution, Ultrason. Sonochem., 34, 763, 10.1016/j.ultsonch.2016.07.009 Qiu, 2016, Mesoporous TiO2 encapsulating a visible-light responsive upconversion agent for enhanced sonocatalytic degradation of bisphenol-A, RSC Adv., 6, 37434, 10.1039/C6RA01689H Wang, 2006, Investigation on degradation of dyestuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent, J. Photochem. Photobiol. A: Chem., 180, 189, 10.1016/j.jphotochem.2005.10.016 Chen, 2014, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics, Chem. Rev., 114, 5161, 10.1021/cr400425h Zhang, 2016, Preparation of Er3+:Y3Al5O12/KNbO3 composite and application ininnocent treatment of ketamine by using sonocatalytic decomposition method, J. Hazard. Mater., 317, 667, 10.1016/j.jhazmat.2016.03.097 Wang, 2017, Photocatalytic conversion of nitrite in aqueous solution over nanocomposite photocatalyst Er3+:Y3Al5O12/BiPO4 using different photosources, J. Ind. Eng. Chem., 47, 74, 10.1016/j.jiec.2016.11.016 Zhang, 2017, Preparation of Er3+:Y3Al5O12/WO3-KNbO3 composite and application in treatment of methamphetamine under ultrasonic irradiation, Ultrason. Sonochem., 35, 478, 10.1016/j.ultsonch.2016.11.004 Huang, 2017, Hydrothermal-precipitation preparation of CdS@(Er3+:Y3Al5O12/ZrO2) coated composite and sonocatalytic degradation of caffeine, Ultrason. Sonochem., 37, 222, 10.1016/j.ultsonch.2017.01.009 Zhang, 2012, Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW), J. Hazard. Mater., 209–210, 271, 10.1016/j.jhazmat.2012.01.021 Kubo, 2007, Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon, Ind. Eng. Chem. Res., 46, 699, 10.1021/ie0607999 Qiu, 2014, Ordered mesoporous C/TiO2 composites as advanced sonocatalysts, J. Mater. Chem. A, 2, 16452, 10.1039/C4TA03455D Lei, 2012, Enhanced sonocatalytic degradation of Rhodamine B by graphene-TiO2 composites synthesized by an ultrasonic-assisted method, Chin. J. Catal., 33, 1276, 10.1016/S1872-2067(11)60430-0 Karaca, 2016, Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite, Ultrason. Sonochem., 31, 250, 10.1016/j.ultsonch.2016.01.009 Hassani, 2017, Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite, Ultrason. Sonochem., 35, 251, 10.1016/j.ultsonch.2016.09.027 Darvishi Cheshmeh Soltani, 2016, Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: response surface methodological approach, J. Environ. Manage., 179, 47, 10.1016/j.jenvman.2016.05.001 Darvishi Cheshmeh Soltani, 2016, Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase, Ultrason. Sonochem., 28, 69, 10.1016/j.ultsonch.2015.07.002 Qiu, 2015, Uniform core-shell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A, J. Mater. Chem. A, 3, 6492, 10.1039/C4TA06891B Kang, 2015, Enhanced sonocatalytic treatment of ibuprofen by mechanical mixing and reusable magnetic core titanium dioxide, Chem. Eng. J., 264, 522, 10.1016/j.cej.2014.10.106 Khataee, 2017, Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar, Ultrason. Sonochem., 35, 72, 10.1016/j.ultsonch.2016.09.004 Mills, 1993, Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the initial kinetics of carbon dioxide photogeneration, J. Photochem. Photobiol. A: Chem., 71, 75, 10.1016/1010-6030(93)87012-C