Effects of computerized cognitive training as add-on treatment to stimulants in ADHD: a pilot fMRI study

Springer Science and Business Media LLC - Tập 14 - Trang 1933-1944 - 2019
Virginia de Oliveira Rosa1,2, Alexandre Rosa Franco3,4, Giovanni Abrahão Salum Júnior2,5, Carlos Renato Moreira-Maia2, Flávia Wagner2, André Simioni1,2, Caroline de Fraga Bassotto2, Guilherme R. Moritz2, Cristiano Schaffer Aguzzoli6, Augusto Buchweitz7, Marcelo Schmitz2, Katya Rubia8, Luis Augusto Paim Rohde2,5
1Postgraduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
2ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
3Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, USA
4Center for the Developing Brain, Child Mind Institute, New York, USA
5National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
6Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
7BraIns, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
8Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK

Tóm tắt

The neurofunctional effects of Cognitive training (CT) are poorly understood. Our main objective was to assess fMRI brain activation patterns in children with ADHD who received CT as an add-on treatment to stimulant medication. We included twenty children with ADHD from a clinical trial of stimulant medication and CT (10 in medication + CT and 10 in medication + non-active training). Between-group differences were assessed in performance and in brain activation during 3 fMRI paradigms of working memory (N-back: 0-back, 1-back, 2-back, 3-back), sustained attention (Sustained Attention Task - SAT: 2 s, 5 s and 8 s delays) and inhibitory control (Go/No-Go). We found significant group x time x condition interactions in working memory (WM) and sustained attention on brain activation. In N-back, decreases were observed in the BOLD signal change from baseline to endpoint with increasing WM load in the right insula, right putamen, left thalamus and left pallidum in the CT compared to the non-active group; in SAT - increases in the BOLD signal change from baseline to endpoint with increasing delays were observed in bilateral precuneus, right insula, bilateral associative visual cortex and angular gyrus, right middle temporal, precentral, postcentral, superior frontal and middle frontal gyri in the CT compared to the non-active group. CT in ADHD was associated with changes in activation in task-relevant parietal and striato-limbic regions of sustained attention and working memory. Changes in brain activity may precede behavioral performance modifications in working memory and sustained attention, but not in inhibitory control.

Tài liệu tham khảo

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, 5th edition (DSM V). American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596. Andre, J., Picchioni, M., Zhang, R., & Toulopoulou, T. (2015). Working memory circuit as a function of increasing age in healthy adolescence: A systematic review and meta-analyses. NeuroImage: Clinical, 12, 940–948. https://doi.org/10.1016/j.nicl.2015.12.002. Bigorra, A., Garolera, M., Guijarro, S., & Hervás, A. (2016). Long-term far-transfer effects of working memory training in children with ADHD: A randomized controlled trial. European Child & Adolescent Psychiatry, 25(8), 853–867. https://doi.org/10.1007/s00787-015-0804-3. Bikic, A., Christensen, T. Ø., Leckman, J. F., Bilenberg, N., & Dalsgaard, S. (2017). A double-blind randomized pilot trial comparing computerized cognitive exercises to Tetris in adolescents with attention-deficit/hyperactivity disorder. Nordic Journal of Psychiatry, 71(6), 455–464. https://doi.org/10.1080/08039488.2017.1328070. Braunlich, K., Gomez-Lavin, J., & Seger, C. A. (2015). Frontoparietal networks involved in categorization and item working memory. NeuroImage, 107, 146–162. https://doi.org/10.1016/j.neuroimage.2014.11.051. Buitelaar, J., & Medori, R. (2010). Treating attention-deficit/hyperactivity disorder beyond symptom control alone in children and adolescents: A review of the potential benefits of long-acting stimulants. European Child & Adolescent Psychiatry, 19(4), 325–340. https://doi.org/10.1007/s00787-009-0056-1. Cai, W., Chen, T., Szegletes, L., Supekar, K., & Menon, V. (2018). Aberrant time-varying cross-network interactions in children with attention-deficit/hyperactivity disorder and the relation to attention deficits. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 263–273. https://doi.org/10.1016/j.bpsc.2017.10.005. Chacko, A., Feirsen, N., Bedard, A.-C., Marks, D., Uderman, J. Z., & Chimiklis, A. (2013). Cogmed working memory training for youth with ADHD: A closer examination of efficacy utilizing evidence-based criteria. Journal of Clinical Child & Adolescent Psychology, 42(6), 769–783. https://doi.org/10.1080/15374416.2013.787622. Chantiluke, K., Barrett, N., Giampietro, V., Brammer, M., Simmons, A., & Rubia, K. (2015). Disorder-dissociated effects of fluoxetine on brain function of working memory in attention deficit hyperactivity disorder and autism spectrum disorder. Psychological Medicine, 45(6), 1195–1205. https://doi.org/10.1017/S0033291714002232. Christakou, A., Murphy, C. M., Chantiluke, K., Cubillo, A. I., Smith, A. B., Giampietro, V., et al. (2013). Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Molecular Psychiatry, 18(2), 236–244. https://doi.org/10.1038/mp.2011.185. Coghill, D. R., Seth, S., Pedroso, S., Usala, T., Currie, J., & Gagliano, A. (2014). Effects of methylphenidate on cognitive functions in children and adolescents with attention-deficit/hyperactivity disorder: Evidence from a systematic review and a meta-analysis. Biological Psychiatry, 76(8), 603–615. https://doi.org/10.1016/j.biopsych.2013.10.005. Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittmann, R. W., et al. (2015). Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. Journal of the American Academy of Child & Adolescent Psychiatry, 54(3), 164–174. https://doi.org/10.1016/j.jaac.2014.12.010. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, an International Journal, 29(3), 162–173. https://doi.org/10.1006/cbmr.1996.0014. Cox, R. W. (2002). Outlier detection in fMRI time series. Procedures International Society for Magnetic Resonance, 10, 1. Retrieved from http://cds.ismrm.org/ismrm-2002/PDF5/1421.PDF. Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C., & Taylor, P. A. (2017). FMRI clustering in AFNI: False-positive rates redux. Brain Connectivity, 7(3), 152–171. https://doi.org/10.1089/brain.2016.0475. Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M., Simmons, A., & Rubia, K. (2014). Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. Psychological Medicine, 44(03), 633–646. https://doi.org/10.1017/S0033291713000676. Gray, S. A., Chaban, P., Martinussen, R., Goldberg, R., Gotlieb, H., Kronitz, R., et al. (2012). Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: A randomized controlled trial. Journal of Child Psychology and Psychiatry, 53(12), 1277–1284. https://doi.org/10.1111/j.1469-7610.2012.02592.x. Green, C. T., Long, D. L., Green, D., Iosif, A.-M., Dixon, J. F., Miller, M. R., et al. (2012). Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder? Neurotherapeutics, 9(3), 639–648. https://doi.org/10.1007/s13311-012-0124-y. Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry, 70(2), 185–198. https://doi.org/10.1001/jamapsychiatry.2013.277. Higgins, J. P. T., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., et al. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Online), 343(7829), 1–9. https://doi.org/10.1136/bmj.d5928. Hoekzema, E., Carmona, S., Tremols, V., Gispert, J. D., Guitart, M., Fauquet, J., et al. (2010). Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 31(12), 1942–1950. https://doi.org/10.1002/hbm.20988. Hoekzema, E., Carmona, S., Ramos-Quiroga, J. A., Barba, E., Bielsa, A., Tremols, V., et al. (2011). Training-induced neuroanatomical plasticity in ADHD: A tensor-based morphometric study. Human Brain Mapping, 32(10), 1741–1749. https://doi.org/10.1002/hbm.21143. Johnstone, S. J., Roodenrys, S., Blackman, R., Johnston, E., Loveday, K., Mantz, S., & Barratt, M. F. (2012). Neurocognitive training for children with and without AD/HD. ADHD Attention Deficit and Hyperactivity Disorders, 4(1), 11–23. https://doi.org/10.1007/s12402-011-0069-8. Kirk, R. (1996). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56, 746–759. Maia, C. R., Stella, S. F., Wagner, F., Pianca, T. G., Krieger, F. V., Cruz, L. N., et al. (2016). Cost-utility analysis of methylphenidate treatment for children and adolescents with ADHD in Brazil. Revista Brasileira de Psiquiatria, 38(1), 30–38. https://doi.org/10.1590/1516-4446-2014-1516. Mak, L. E., Minuzzi, L., MacQueen, G., Hall, G., Kennedy, S. H., & Milev, R. (2017). The default mode network in healthy individuals: A systematic review and meta-analysis. Brain Connectivity, 7(1), 25–33. https://doi.org/10.1089/brain.2016.0438. Molfese, P.J., Glen, D., Mesite, L., Pugh, K. R., and R. W. C. (2015). The Haskins pediatric brain atlas. Organization for Human Brain Mapping Conference, 313–327. Murphy, C. M., Christakou, A., Daly, E. M., Ecker, C., Giampietro, V., Brammer, M., Smith, A.B., Johnston, P., Robertson, D.M., MRC AIMS Consortium, Murphy, D.G., Rubia, K. (2014). Abnormal functional activation and maturation of fronto-striato-temporal and cerebellar regions during sustained attention in autism spectrum disorder. American Journal of Psychiatry, 171(10), 1107–1116. https://doi.org/10.1176/appi.ajp.2014.12030352. Norman, L. J., Carlisi, C., Lukito, S., Hart, H., Mataix-Cols, D., Radua, J., & Rubia, K. (2016). Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: A comparative meta-analysis. JAMA Psychiatry, 73(8), 815–825. https://doi.org/10.1001/jamapsychiatry.2016.0700. Norman, L. J., Carlisi, C. O., Christakou, A., Cubillo, A., Murphy, C. M., Chantiluke, K., … Rubia, K. (2017). Shared and disorder-specific task-positive and default mode network dysfunctions during sustained attention in paediatric attention-deficit/hyperactivity disorder and obsessive/compulsive disorder. NeuroImage: Clinical, 15(April), 181–193. https://doi.org/10.1016/j.nicl.2017.04.013. O’Connell, R. G., Bellgrove, M. A., Dockree, P. M., & Robertson, I. H. (2006). Cognitive remediation in ADHD: Effects of periodic non-contingent alerts on sustained attention to response. Neuropsychological Rehabilitation, 16(6), 653–665. https://doi.org/10.1080/09602010500200250. Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., & Rohde, L. A. (2007). The worldwide prevalence of ADHD: A systematic review and metaregression analysis. The American Journal of Psychiatry, 164(6), 942–948. https://doi.org/10.1176/ajp.2007.164.6.942. Rosa, V. O., Schmitz, M., Moreira-Maia, C. R., Wagner, F., Londero, I., Bassotto, C. F., … Rohde, L. A. P. (2017). Computerized cognitive training in children and adolescents with attention deficit/hyperactivity disorder as add-on treatment to stimulants: Feasibility study and protocol description. Trends in Psychiatry and Psychotherapy, 39(2), 65–76. https://doi.org/10.1590/2237-6089-2016-0039. Rubia, K. (2018). Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in Human Neuroscience, 12(March), 1–23. https://doi.org/10.3389/fnhum.2018.00100. Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., & Brammer, M. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27(12), 973–993. https://doi.org/10.1002/hbm.20237. Rubia, K., Halari, R., Cubillo, A., Mohammad, A. M., Brammer, M., & Taylor, E. (2009). Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Neuropharmacology, 57(7–8), 640–652. https://doi.org/10.1016/j.neuropharm.2009.08.013. Siniatchkin, M., Glatthaar, N., Von Müller, G. G., Prehn-Kristensen, A., Wolff, S., Knöchel, S., et al. (2012). Behavioural treatment increases activity in the cognitive neuronal networks in children with attention deficit/hyperactivity disorder. Brain Topography, 25(3), 332–344. https://doi.org/10.1007/s10548-012-0221-6. Smith, A. B., Taylor, E., Brammer, M., Toone, B., & Rubia, K. (2006). Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. The American Journal of Psychiatry, 163(6), 1044–1051. https://doi.org/10.1176/ajp.2006.163.6.1044. Sonuga-Barke, E., Brandeis, D., Holtmann, M., & Cortese, S. (2014). Computer-based cognitive training for ADHD. Child and Adolescent Psychiatric Clinics of North America, 23(4), 807–824. https://doi.org/10.1016/j.chc.2014.05.009. Stevens, M. C., Gaynor, A., Bessette, K. L., & Pearlson, G. D. (2016). A preliminary study of the effects of working memory training on brain function. Brain Imaging and Behavior, 10(2), 387–407. https://doi.org/10.1007/s11682-015-9416-2. Yarkoni, T., Poldrack, R., & Nichols, T. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670. https://doi.org/10.1038/nmeth.1635.Large-scale.