Quadrature formulas for integration of multivariate trigonometric polynomials on spherical triangles

Springer Science and Business Media LLC - Tập 3 - Trang 119-138 - 2012
J. Beckmann1, H. N. Mhaskar2,3, J. Prestin1
1Institute of Mathematics, University of Lübeck, Lübeck, Germany
2Department of Mathematics, California State University, Los Angeles, USA
3California Institute of Technology, Pasadena, USA

Tóm tắt

We describe an explicit construction of quadrature rules exact for integrating multivariate trigonometric polynomials of a given coordinatewise degree on a spherical triangle. The theory is presented in the more general setting of quadrature formulas on a compact subset of the unit hypersphere, $${\mathbb {S}^q}$$ , embedded in the Euclidean space $${\mathbb {R} ^{q+1}}$$ . The number of points at which the polynomials are sampled is commensurate with the dimension of the polynomial space.

Tài liệu tham khảo

Freeden, W., Glockner, O., Schreiner M.: Spherical Panel Clustering and Its Numerical Aspects. AGTM Report No. 183, University of Kaiserlautern, Geomathematics Group (1997) Freeden, W., Windheuser U.: Spherical Wavelet Transform and Its Discretization, AGTM Report No. 125, University of Kaiserlautern, Geomathematics Group (1995) Freud, G.: Orthogonal Polynomials. Académiai Kiado, Budapest (1971) Ganesh M., Mhaskar H.N.: Matrix-free interpolation on the sphere. SIAM J. Numer. Anal. 44(3), 1314–1331 (2006) Gautschi W.: On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput. 3(3), 289–317 (1982) Gautschi W.: Orthogonal polynomials: computation and approximation. Oxford University Press, Oxford (2004) Gautschi W.: Orthogonal polynomials (in Matlab). J. Comput. Appl. Math. 178(1–2), 215–234 (2005) Hesse, K., Womersley, R.S.: Numerical integration with polynomial exactness over a spherical cap. Adv. Comput. Math. (2011) (available online Sept. 23, 2011) Le Gia Q.T., Mhaskar H.N.: Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47(1), 440–466 (2008) Mhaskar H.N., Narcowich F.J., Ward J.D.: Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Math. Comput. 70, 1113–1130 (2001) Mhaskar H.N.: Local quadrature formulas on the sphere. J. Complex. 20, 753–772 (2004a) Mhaskar, H.N.: Local quadrature formulas on the sphere, II. In: Neamtu, M., Saff, E.B. (eds.) Advances in Constructive Approximation. Nashboro Press, Nashville, pp. 333–344 (2004b) Renka R.J.: Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere. ACM Trans. Math. Softw. 23(3), 416–434 (1997)