Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range
Tài liệu tham khảo
Anantharaj, 2016, ACS Catal., 6, 8069, 10.1021/acscatal.6b02479
Song, 2017, Adv. Energy Mater., 7, 1601555, 10.1002/aenm.201601555
Hua, 2017, Nano Energy, 32, 247, 10.1016/j.nanoen.2016.12.044
Sheng, 2013, Energy Environ. Sci., 6, 1509, 10.1039/c3ee00045a
Yan, 2016, J. Mater. Chem. A, 4, 17587, 10.1039/C6TA08075H
Dou, 2018, Small Methods, 1800211
Wang, 2018, Adv. Sci., 5, 1800064, 10.1002/advs.201800064
Ding, 2018, Nano Energy, 47, 1, 10.1016/j.nanoen.2018.02.017
Zeng, 2018, Chem. Commun., 54, 1465, 10.1039/C7CC08838H
Feng, 2018, J. Am. Chem. Soc., 140, 610, 10.1021/jacs.7b08521
Liu, 2017, Adv. Mater., 29, 1606521, 10.1002/adma.201606521
Jiang, 2014, Angew. Chem. Int. Ed., 53, 12855, 10.1002/anie.201406848
Chung, 2017, J. Am. Chem. Soc., 139, 6669, 10.1021/jacs.7b01530
Pu, 2017, ACS Appl. Mater. Interfaces, 9, 16187, 10.1021/acsami.7b02069
Tian, 2016, ACS Catal., 6, 5441, 10.1021/acscatal.6b01515
Son, 2016, Chem. Commun., 52, 2819, 10.1039/C5CC09832G
Pu, 2017, Nanoscale, 9, 3555, 10.1039/C6NR09883E
Lin, 2018, J. Mater. Chem. A, 6, 6387, 10.1039/C8TA00260F
Tabassum, 2017, Adv. Energy Mater., 7, 1601671, 10.1002/aenm.201601671
Ma, 2017, Energy Environ. Sci., 10, 788, 10.1039/C6EE03768B
Ma, 2018, Small, 14, 1702895, 10.1002/smll.201702895
Tan, 2016, Energy Environ. Sci., 9, 2257, 10.1039/C6EE01109H
Guan, 2018, Nano Energy, 48, 73, 10.1016/j.nanoen.2018.03.034
Tang, 2016, Nano Lett., 16, 6617, 10.1021/acs.nanolett.6b03332
Hao, 2015, Nanoscale, 7, 11055, 10.1039/C5NR01955A
Xie, 2018, J. Mater. Chem. A, 6, 6754, 10.1039/C8TA00612A
Wei, 2017, Adv. Mater., 29, 1602300, 10.1002/adma.201602300
Pei, 2016, Nano Energy, 20, 254, 10.1016/j.nanoen.2015.12.025
Tao, 2017, Nano Energy, 41, 417, 10.1016/j.nanoen.2017.09.055
Cui, 2016, Acc. Chem. Res., 49, 483, 10.1021/acs.accounts.5b00530
Wu, 2017, Sci. Adv., 3, eaap9252, 10.1126/sciadv.aap9252
Guan, 2017, Adv. Energy Mater., 7, 1602391, 10.1002/aenm.201602391
Wang, 2018, Adv. Funct. Mater., 28, 1705356, 10.1002/adfm.201705356
Zhang, 2016, ACS Nano, 10, 684, 10.1021/acsnano.5b05728
Weng, 2018, ACS Energy Lett., 3, 1434, 10.1021/acsenergylett.8b00584
Yang, 2017, ACS Catal., 7, 3824, 10.1021/acscatal.7b00587
Wang, 2017, J. Mater. Chem. A, 5, 17982, 10.1039/C7TA03167J
Wang, 2018, Adv. Funct. Mater., 28, 1705048, 10.1002/adfm.201705048
Jin, 2018, J. Mater. Chem. A, 6, 20093, 10.1039/C8TA07849A
Yan, 2017, Adv. Funct. Mater., 27, 1703455, 10.1002/adfm.201703455
Chen, 2018, Adv. Mater., 1802011, 10.1002/adma.201802011
Kresse, 1996, Comp. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Kresse, 1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Huang, 2014, J. Mater. Chem. A, 2, 8048, 10.1039/C4TA00200H
Cho, 2011, Chem. Commun., 47, 4138, 10.1039/c1cc00079a
Bauer, 2008, Inorg. Chem., 47, 7568, 10.1021/ic800538r
Serre, 2007, Science, 315, 1828, 10.1126/science.1137975
Vuong, 2013, Dalton Trans., 42, 550, 10.1039/C2DT32073H
Pan, 2018, J. Am. Chem. Soc., 140, 2610, 10.1021/jacs.7b12420
Liu, 2017, ACS Nano, 158
Zhang, 2017, Adv. Mater., 29, 1605502, 10.1002/adma.201605502
Hu, 2018, Small, 14, 1704233, 10.1002/smll.201704233
Li, 2017, ACS Appl. Mater. Interfaces, 9, 5982, 10.1021/acsami.6b14127
Wang, 2017, Nanoscale, 9, 17349, 10.1039/C7NR06186B
Qiu, 2018, Adv. Funct. Mater., 28, 1706008, 10.1002/adfm.201706008
Kibsgaard, 2015, Energy Environ. Sci., 8, 3022, 10.1039/C5EE02179K
Wang, 2017, Adv. Mater., 29, 1605838, 10.1002/adma.201605838
Yan, 2017, ACS Appl. Mater. Interfaces, 9, 11642, 10.1021/acsami.7b01037
Teng, 2017, J. Mater. Chem. A, 5, 22790, 10.1039/C7TA07895A
Li, 2017, J. Mater. Chem., A5, 14828, 10.1039/C7TA03947F
Liang, 2016, Nano Lett., 16, 7718, 10.1021/acs.nanolett.6b03803