The robustness of contextuality and the contextuality cost of empirical models

Science China Physics, Mechanics & Astronomy - Tập 59 - Trang 1-10 - 2016
HuiXian Meng1, HuaiXin Cao1, WenHua Wang2
1School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, China
2School of Ethnic Nationalities Education, Shaanxi Normal University, Xi’an, China

Tóm tắt

In this paper, we introduce and discuss the robustness of contextuality (RoC) R C (e) and the contextuality cost C(e) of an empirical model e. The following properties of them are proved. (i) An empirical model e is contextual if and only if R C (e) > 0; (ii) the RoC function R C is convex, lower semi-continuous and un-increasing under an affine mapping on the set EM of all empirical models; (iii) e is non-contextual if and only if C(e) = 0; (iv) e is contextual if and only if C(e) > 0; (v) e is strongly contextual if and only if C(e) = 1. Also, a relationship between R C (e) and C(e) is obtained. Lastly, the RoC of three empirical models is computed and compared. Especially, the RoC of the PR boxes is obtained and the supremum 0.5 is found for the RoC of all no-signaling type (2, 2, 2) empirical models.

Tài liệu tham khảo

S. Kochen, and E. P. Specker, J. Math. Mech. 17, 59 (1967). D. P. DiVincenzo, and A. Peres, Phys. Rev. A 55, 4089 (1997). E. F. Galvao, Quantum Random Access Codes Using Single d-level Systems, Dissertation for the Doctoral Degree (Oxford University, Oxford, 2002). K. Nagata, Phys. Rev. A 72, 012325 (2005). N. Aharon, and L. Vaidman, Phys. Rev. A 77, 052310 (2008). M. J. Wallman, V. Veitch, and J. Emerson, Nature 510, 7505 (2014). S. Abramsky, and A. Brandenburge, New J. Phys. 13, 1 (2011). A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, P. Joshi, W. Klus, and A. Wocik, Phys. Rev. Lett. 112, 1204011 (2014). J. Bell, Physics 1, 195 (1964). R. Werner, Phys. Rev. A 40, 4277 (1989). J. X. Qi, X. W. Zha, and X. M. Sun, Sci. China-Phys. Mech. Astron. 56, 2236 (2013). W. Wen, Sci. China-Phys. Mech. Astron. 56, 947 (2013). W. J. Guo, D. H. Fan, and L. F. Wei, Sci. China-Phys. Mech. Astron. 58, 024201 (2015). E. P. Specker, Dialectica 14, 239 (1960). W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, Sci. China-Phys. Mech. Astron. 58, 050309 (2015). Y. Yan, W. J. Gu, and G. X. Li, Sci. China-Phys. Mech. Astron. 58, 050306 (2015). Q. Lin, Sci. China-Phys. Mech. Astron. 58, 044201 (2015). A. Veitia, J. Jing, T. Yu, and C. W. Wong, Phys. Lett. A 376, 2755 (2012). W. Q. Liu, J. Y. Peng, C. Wang, Z. W. Cao, D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, Sci. China-Phys. Mech. Astron. 58, 020301 (2015). Y. Liu, and F. H. Zhang, Sci. China-Phys. Mech. Astron. 58, 070301 (2015). C. M. Yao, Z. H. Chen, Z. H. Ma, S. Severini, and A. Serafini, Sci. China-Phys. Mech. Astron. 57, 1703 (2014). G. Vidal, and R. Tarrach, Phys. Rev. A 59, 141 (1999). F. Manuel, W. Severin, and W. Stefan, Phys. Rev. Lett. 102, 1204011 (2009). J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969). J. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge University Press, Cambridge, 1987). A. Cabello, Phys. Rev. Lett. 101, 210401 (2008). Y. Zhang, H. X. Cao, and Z. H. Guo, Acta Math. Sin. 54, 959 (2011). A. A. Klyachko, [arXiv:quant-ph/0206012].