Special issue on computer vision and image analysis in plant phenotyping

Machine Vision and Applications - Tập 27 - Trang 607-609 - 2016
Hanno Scharr1, Hannah Dee2, Andrew P. French3, Sotirios A. Tsaftaris4,5
1Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Jülich, Germany
2Department of Computer Science, Aberystwyth University, Aberystwyth, UK
3Schools of Computer Science and Biosciences, University of Nottingham, Nottingham, UK
4School of Engineering, University of Edinburgh, Edinburgh, UK
5IMT Institute for Advanced Studies, Lucca, Italy

Tài liệu tham khảo

Augustin, M., Haxhimusa, Y., Busch, W., Kropatsch, W.G.: A framework for the extraction of quantitative traits from 2d images of mature Arabidopsis thaliana. Mach. Vis. Appl. 27(5), 647–661 (2016). doi:10.1007/s00138-015-0720-z Augustin, M., Haxhimusa, Y., Busch, W., Kropatsch, W.G.: Image-based phenotyping of the mature Arabidopsis shoot system. In: Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 231–246. Springer (2015) Behmann, J., Mahlein, A.K., Paulus, S., Dupuis, J., Kuhlmann, H., Oerke, E.C., Plümer, L.: Generation and application of hyperspectral 3d plant models: methods and challenges. Mach. Vis. Appl. 27(5), 611–624 (2016). doi:10.1007/s00138-015-0716-8 Behmann, J., Mahlein, A.K., Paulus, S., Kuhlmann, H., Oerke, E.C., Plümer, L.: Generation and application of hyperspectral 3d plant models. In: L. Agapito, M.M. Bronstein, C. Rother (eds.) Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 117–130. Springer (2016). doi:10.1007/978-3-319-16220-1_9 Benoit, L., Benoit, R., Belin, É., Vadaine, R., Demilly, D., Chapeau-Blondeau, F., Rousseau, D.: On the value of the Kullback-Leibler divergence for cost-effective spectral imaging of plants by optimal selection of wavebands. Mach. Vis. Appl. 27(5), 625–635 (2016). doi:10.1007/s00138-015-0717-7 Boyle, R.D., Corke, F.M.K., Doonan, J.H.: Automated estimation of tiller number in wheat by ribbon detection. Mach. Vis. Appl. 27(5), 637–646 (2016). doi:10.1007/s00138-015-0719-5 Cruz, J.A., Yin, X., Liu, X., Imran, S.M., Morris, D.D., Kramer, D.M., Chen, J.: Multi-modality imagery database for plant phenotyping. Mach. Vis. Appl. 27(5), 735–749 (2016). doi:10.1007/s00138-015-0734-6 Golbach, F., Kootstra, G., Damjanovic, S., Otten, G., Zedde, R.: Validation of plant part measurements using a 3d reconstruction method suitable for high-throughput seedling phenotyping. Mach. Vis. Appl. 27(5), 663–680 (2016). doi:10.1007/s00138-015-0727-5 Kelly, D., Vatsa, A., Mayham, W., Kazic, T.: Extracting complex lesion phenotypes in Zea mays. Mach. Vis. Appl. 27(1), 145–156 (2016). doi:10.1007/s00138-015-0718-6 Kelly, D., Vatsa, A., Mayham, W., Ngô, L., Thompson, A., Kazic, T.: An opinion on imaging challenges in phenotyping field crops. Mach. Vis. Appl. 27(5), 681–694 (2016). doi:10.1007/s00138-015-0728-4 Larese, M.G., Granitto, P.M.: Finding local leaf vein patterns for legume characterization and classification. Mach. Vis. Appl. 27(5), 709–720 (2016). doi:10.1007/s00138-015-0732-8 Larese, M.G., Granitto, P.M.: Hybrid consensus learning for legume species and cultivars classification. In: L. Agapito, M.M. Bronstein, C. Rother (eds.) Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 201–214. Springer (2015). doi:10.1007/978-3-319-16220-1_15 Mairhofer, S., Johnson, J., Sturrock, C.J., Bennett, M.J., Mooney, S.J., Pridmore, T.P.: Visual tracking for the recovery of multiple interacting plant root systems from X-ray \(\mu \)CT images. Mach. Vis. Appl. 27(5), 721–734 (2016). doi:10.1007/s00138-015-0733-7 Mairhofer, S., Sturrock, C.J., Bennett, M.J., Mooney, S.J., Pridmore, T.P.: Visual object tracking for the extraction of multiple interacting plant root systems. In: L. Agapito, M.M. Bronstein, C. Rother (eds.) Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 89–104. Springer (2015). doi:10.1007/978-3-319-16220-1_7 Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognit. Lett. (2015). doi:10.1016/j.patrec.2015.10.013 Minervini, M., Scharr, H., Tsaftaris, S.A.: Image analysis: the new bottleneck in plant phenotyping [Applications Corner]. IEEE Signal Processing Magazine 32(4), 126–131 (2015). doi:10.1109/MSP.2015.2405111 Othmani, A.A., Jiang, C., Lomenie, N., Favreau, J.M., Piboule, A., Voon, L.F.C.L.Y.: A novel computer-aided tree species identification method based on burst wind segmentation of 3d bark textures. Mach. Vis. Appl. 27(5), 751–766 (2016). doi:10.1007/s00138-015-0738-2 Pound, M.P., French, A.P., Fozard, J.A., Murchie, E.H., Pridmore, T.P.: A patch-based approach to 3d plant shoot phenotyping. Mach. Vis. Appl. 27(5), 767–779 (2016). doi:10.1007/s00138-016-0756-8 Pound, M.P., French, A.P., Murchie, E.H., Pridmore, T.P.: Surface reconstruction of plant shoots from multiple views. In: L. Agapito, M.M. Bronstein, C. Rother (eds.) Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 158–173. Springer (2015). doi:10.1007/978-3-319-16220-1_12 Santos, T.T., Koenigkan, L.V., Barbedo, J.G.A., Rodrigues, G.C.: 3d plant modeling: localization, mapping and segmentation for plant phenotyping using a single hand-held camera. In: L. Agapito, M.M. Bronstein, C. Rother (eds.) Computer Vision—ECCV 2014 Workshops, vol. 8928, pp. 247–263. Springer (2015). doi:10.1007/978-3-319-16220-1_18 Santos, T.T., Rodrigues, G.C.: Flexible three-dimensional modeling of plants using low- resolution cameras and visual odometry. Mach. Vis. Appl. 27(5), 695–707 (2016). doi:10.1007/s00138-015-0729-3 Scharr, H., Minervini, M., French, A.P., Klukas, C., Kramer, D.M., Liu, X., Luengo, I., Pape, J.M., Polder, G., Vukadinovic, D., Yin, X., Tsaftaris, S.A.: Leaf segmentation in plant phenotyping: a collation study. Mach. Vis. Appl. 27(4), 585–606 (2016). doi:10.1007/s00138-015-0737-3