Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development

Cell Stem Cell - Tập 25 - Trang 558-569.e7 - 2019
Cleber A. Trujillo1,2, Richard Gao3, Priscilla D. Negraes1,2, Jing Gu4, Justin Buchanan4, Sebastian Preissl4, Allen Wang4, Wei Wu1, Gabriel G. Haddad1,5, Isaac A. Chaim2, Alain Domissy2, Matthieu Vandenberghe6, Anna Devor6,7, Gene W. Yeo2, Bradley Voytek3,8, Alysson R. Muotri1,2,8,9
1Department of Pediatrics/Rady Children’s Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
2Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
3Neurosciences Graduate Program, Institute for Neural Computation, Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
4Center for Epigenomics, Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
5Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093 USA
6Department of Radiology, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
7Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
8Kavli Institute for Brain and Mind and Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
9Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA

Tài liệu tham khảo

Allène, 2008, Sequential generation of two distinct synapse-driven network patterns in developing neocortex, J. Neurosci., 28, 12851, 10.1523/JNEUROSCI.3733-08.2008 Ben-Ari, 2001, Developing networks play a similar melody, Trends Neurosci., 24, 353, 10.1016/S0166-2236(00)01813-0 Birey, 2017, Assembly of functionally integrated human forebrain spheroids, Nature, 545, 54, 10.1038/nature22330 Blankenship, 2010, Mechanisms underlying spontaneous patterned activity in developing neural circuits, Nat. Rev. Neurosci., 11, 18, 10.1038/nrn2759 Butler, 2018, Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol., 36, 411, 10.1038/nbt.4096 Buzsáki, 2004, Large-scale recording of neuronal ensembles, Nat. Neurosci., 7, 446, 10.1038/nn1233 Buzsáki, 2004, Neuronal oscillations in cortical networks, Science, 304, 1926, 10.1126/science.1099745 Buzsáki, 2012, The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes, Nat. Rev. Neurosci., 13, 407, 10.1038/nrn3241 Buzsáki, 2013, Scaling brain size, keeping timing: evolutionary preservation of brain rhythms, Neuron, 80, 751, 10.1016/j.neuron.2013.10.002 Camp, 2015, Human cerebral organoids recapitulate gene expression programs of fetal neocortex development, Proc. Natl. Acad. Sci. USA, 112, 15672, 10.1073/pnas.1520760112 Cederquist, 2019, Specification of positional identity in forebrain organoids, Nat. Biotechnol., 37, 436, 10.1038/s41587-019-0085-3 de Hemptinne, 2015, Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease, Nat. Neurosci., 18, 779, 10.1038/nn.3997 Farahany, 2018, The ethics of experimenting with human brain tissue, Nature, 556, 429, 10.1038/d41586-018-04813-x Fries, 2005, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends Cogn. Sci., 9, 474, 10.1016/j.tics.2005.08.011 Gao, 2017, Inferring synaptic excitation/inhibition balance from field potentials, Neuroimage, 158, 70, 10.1016/j.neuroimage.2017.06.078 Gertsman, 2014, Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics, Metabolomics, 10, 312, 10.1007/s11306-013-0582-1 Giandomenico, 2019, Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output, Nat. Neurosci., 22, 669, 10.1038/s41593-019-0350-2 Haller, 2018, Parameterizing neural power spectra, bioRxiv Henriques, 1991, Left frontal hypoactivation in depression, J. Abnorm. Psychol., 100, 535, 10.1037/0021-843X.100.4.535 Johnson, 2001, Functional brain development in humans, Nat. Rev. Neurosci., 2, 475, 10.1038/35081509 Kelava, 2016, Stem cell models of human brain development, Cell Stem Cell, 18, 736, 10.1016/j.stem.2016.05.022 Khan, 2013, Local and long-range functional connectivity is reduced in concert in autism spectrum disorders, Proc. Natl. Acad. Sci. USA, 110, 3107, 10.1073/pnas.1214533110 Khazipov, 2006, Early patterns of electrical activity in the developing cerebral cortex of humans and rodents, Trends Neurosci., 29, 414, 10.1016/j.tins.2006.05.007 Lancaster, 2014, Generation of cerebral organoids from human pluripotent stem cells, Nat. Protoc., 9, 2329, 10.1038/nprot.2014.158 Lancaster, 2013, Cerebral organoids model human brain development and microcephaly, Nature, 501, 373, 10.1038/nature12517 Lisman, 1997, Bursts as a unit of neural information: making unreliable synapses reliable, Trends Neurosci., 20, 38, 10.1016/S0166-2236(96)10070-9 Luo, 2016, Cerebral organoids recapitulate epigenomic signatures of the human fetal brain, Cell Rep., 17, 3369, 10.1016/j.celrep.2016.12.001 Manning, 2009, Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans, J. Neurosci., 29, 13613, 10.1523/JNEUROSCI.2041-09.2009 Mariani, 2012, Modeling human cortical development in vitro using induced pluripotent stem cells, Proc. Natl. Acad. Sci. USA, 109, 12770, 10.1073/pnas.1202944109 McInnes, 2018, UMAP: uniform manifold approximation and projection for dimension reduction, arXiv Miller, 2007, Spectral changes in cortical surface potentials during motor movement, J. Neurosci., 27, 2424, 10.1523/JNEUROSCI.3886-06.2007 Moore, 2019, Setd5 haploinsufficiency alters neuronal network connectivity and leads to autistic-like behaviors in mice, Transl. Psychiatry, 9, 24, 10.1038/s41398-018-0344-y Mukamel, 2005, Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex, Science, 309, 951, 10.1126/science.1110913 Murrell, 2005 Nageshappa, 2016, Altered neuronal network and rescue in a human MECP2 duplication model, Mol. Psychiatry, 21, 178, 10.1038/mp.2015.128 Opitz, 2002, Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro, J. Neurophysiol., 88, 2196, 10.1152/jn.00316.2002 Pașca, 2018, The rise of three-dimensional human brain cultures, Nature, 553, 437, 10.1038/nature25032 Paşca, 2015, Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture, Nat. Methods, 12, 671, 10.1038/nmeth.3415 Pedregosa, 2011, Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825 Power, 2010, The development of human functional brain networks, Neuron, 67, 735, 10.1016/j.neuron.2010.08.017 Qian, 2016, Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure, Cell, 165, 1238, 10.1016/j.cell.2016.04.032 Quadrato, 2017, Cell diversity and network dynamics in photosensitive human brain organoids, Nature, 545, 48, 10.1038/nature22047 Quiroga, 2005, Invariant visual representation by single neurons in the human brain, Nature, 435, 1102, 10.1038/nature03687 Renner, 2017, Self-organized developmental patterning and differentiation in cerebral organoids, EMBO J., 36, 1316, 10.15252/embj.201694700 Schevon, 2012, Evidence of an inhibitory restraint of seizure activity in humans, Nat. Commun., 3, 1060, 10.1038/ncomms2056 Stevenson, 2017, Functional maturation in preterm infants measured by serial recording of cortical activity, Sci. Rep., 7, 12969, 10.1038/s41598-017-13537-3 Stuart, 2019, Comprehensive integration of single-cell data, Cell, 177, 1888, 10.1016/j.cell.2019.05.031 Tang, 2016, KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome, Proc. Natl. Acad. Sci. USA, 113, 751, 10.1073/pnas.1524013113 Tetzlaff, 2010, Self-organized criticality in developing neuronal networks, PLoS Comput. Biol., 6, e1001013, 10.1371/journal.pcbi.1001013 Thomas, 2017, Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation, Cell Stem Cell, 21, 319, 10.1016/j.stem.2017.07.009 Tolonen, 2007, Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies, Neuroscience, 145, 997, 10.1016/j.neuroscience.2006.12.070 Tort, 2010, Measuring phase-amplitude coupling between neuronal oscillations of different frequencies, J. Neurophysiol., 104, 1195, 10.1152/jn.00106.2010 Uhlhaas, 2010, Abnormal neural oscillations and synchrony in schizophrenia, Nat. Rev. Neurosci., 11, 100, 10.1038/nrn2774 Uhlhaas, 2010, Neural synchrony and the development of cortical networks, Trends Cogn. Sci., 14, 72, 10.1016/j.tics.2009.12.002 Uylings, 2002, Structural and immunocytochemical differentiation of neurons in prenatal and postnatal human prefrontal cortex, Neuroembryology, 1, 176, 10.1159/000066268 van de Leemput, 2014, CORTECON: a temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells, Neuron, 83, 51, 10.1016/j.neuron.2014.05.013 Van Hove, 2014, Disorders of glycine, serine, GABA, and proline metabolism, 63 Voytek, 2015, Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease, Biol. Psychiatry, 77, 1089, 10.1016/j.biopsych.2015.04.016 Voytek, 2015, Oscillatory dynamics coordinating human frontal networks in support of goal maintenance, Nat. Neurosci., 18, 1318, 10.1038/nn.4071 Wickham, 2016 Xiang, 2017, Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration, Cell Stem Cell, 21, 383, 10.1016/j.stem.2017.07.007 Xiang, 2019, hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids, Cell Stem Cell, 24, 487, 10.1016/j.stem.2018.12.015 Yoon, 2019, Reliability of human cortical organoid generation, Nat. Methods, 16, 75, 10.1038/s41592-018-0255-0 Zerbino, 2018, Ensembl 2018, Nucleic Acids Res., 46, D754, 10.1093/nar/gkx1098 Zheng, 2017, Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049, 10.1038/ncomms14049