Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over n-normed spaces

Springer Science and Business Media LLC - Tập 2014 - Trang 1-16 - 2014
Syed Abdul Mohiuddine1, Kuldip Raj2, Abdullah Alotaibi1
1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
2School of Mathematics, Shri Mata Vaishno Devi University, Katra, India

Tóm tắt

The aim of this paper is to introduce some generalized spaces of double sequences with the help of the Musielak-Orlicz function and four-dimensional bounded-regular (shortly, RH-regular) matrices over n-normed spaces. Some topological properties and inclusion relations between these spaces are investigated. MSC:40A05, 40D25.

Tài liệu tham khảo

Gähler S: Linear 2-normierte Räume. Math. Nachr. 1965, 28: 1–43. Misiak A: n -Inner product spaces. Math. Nachr. 1989, 140: 299–319. 10.1002/mana.19891400121 Gunawan H: On n -inner product, n -norms, and the Cauchy-Schwartz inequality. Sci. Math. Jpn. 2001, 5: 47–54. Gunawan H: The space of p -summable sequence and its natural n -norm. Bull. Aust. Math. Soc. 2001, 64: 137–147. 10.1017/S0004972700019754 Gunawan H, Mashadi M: On n -normed spaces. Int. J. Math. Math. Sci. 2001, 27: 631–639. 10.1155/S0161171201010675 Hardy GH: On the convergence of certain multiple series. Proc. Camb. Philos. Soc. 1917, 19: 86–95. Bromwich TJ: An Introduction to the Theory of Infinite Series. Macmillan & Co., New York; 1965. Móricz F: Extension of the spaces c and c 0 from single to double sequences. Acta Math. Hung. 1991, 57: 129–136. 10.1007/BF01903811 Móricz F, Rhoades BE: Almost convergence of double sequences and strong regularity of summability matrices. Math. Proc. Camb. Philos. Soc. 1988, 104: 283–294. 10.1017/S0305004100065464 Başarır M, Sonalcan O: On some double sequence spaces. J. Indian Acad. Math. 1999, 21: 193–200. Mursaleen M, Mohiuddine SA: Regularly σ -conservative and σ -coercive four dimensional matrices. Comput. Math. Appl. 2008, 56: 1580–1586. 10.1016/j.camwa.2008.03.007 Mursaleen M, Mohiuddine SA: On σ -conservative and boundedly σ -conservative four-dimensional matrices. Comput. Math. Appl. 2010, 59: 880–885. 10.1016/j.camwa.2009.10.006 Mursaleen M: Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl. 2004,293(2):523–531. 10.1016/j.jmaa.2004.01.014 Mursaleen M, Edely OHH: Almost convergence and a core theorem for double sequences. J. Math. Anal. Appl. 2004,293(2):532–540. 10.1016/j.jmaa.2004.01.015 Altay B, Başar F: Some new spaces of double sequences. J. Math. Anal. Appl. 2005, 309: 70–90. 10.1016/j.jmaa.2004.12.020 Başar F, Sever Y:The space L q of double sequences. Math. J. Okayama Univ. 2009, 51: 149–157. Mursaleen M, Mohiuddine SA: Some matrix transformations of convex and paranormed sequence spaces into the spaces of invariant means. J. Funct. Spaces Appl. 2012., 2012: Article ID 612671 Mohiuddine SA, Alotaibi A: Some spaces of double sequences obtained through invariant mean and related concepts. Abstr. Appl. Anal. 2013., 2013: Article ID 507950 Demirci K: Strong A -summability and A -statistical convergence. Indian J. Pure Appl. Math. 1996, 27: 589–593. Mursaleen M, Mohiuddine SA: Some new double sequences spaces of invariant means. Glas. Mat. 2010,45(65):139–153. Parashar SD, Choudhary B: Sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 1994, 25: 419–428. Kizmaz H: On certain sequences spaces. Can. Math. Bull. 1981,24(2):169–176. 10.4153/CMB-1981-027-5 Et M, Çolak R: On generalized difference sequence spaces. Soochow J. Math. 1995,21(4):377–386. Et M: Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space. Taiwan. J. Math. 2006,10(4):865–879. Et M: Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences. Appl. Math. Comput. 2013, 219: 9372–9376. 10.1016/j.amc.2013.03.039 Raj K, Sharma AK, Sharma SK: A sequence space defined by Musielak-Orlicz function. Int. J. Pure Appl. Math. 2011, 67: 475–484. Raj K, Jamwal S, Sharma SK: New classes of generalized sequence spaces defined by an Orlicz function. J. Comput. Anal. Appl. 2013, 15: 730–737. Raj K, Sharma SK: Some generalized difference double sequence spaces defined by a sequence of Orlicz-function. CUBO 2012, 14: 167–189. 10.4067/S0719-06462012000300011 Raj K, Sharma SK, Sharma AK: Some difference sequence spaces in n -normed spaces defined by Musielak-Orlicz function. Armen. J. Math. 2010, 3: 127–141. Tripathy BC: Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces. Soochow J. Math. 2004, 30: 431–446. Et M, Altin Y, Choudhary B, Tripathy BC: On some classes of sequences defined by sequences of Orlicz functions. Math. Inequal. Appl. 2006, 9: 335–342. Lindenstrauss J, Tzafriri L: On Orlicz sequence spaces. Isr. J. Math. 1971, 10: 379–390. 10.1007/BF02771656 Maligranda L Seminars in Mathematics 5. Orlicz Spaces and Interpolation 1989. Polish Academy of Science Musielak J Lecture Notes in Mathematics 1034. In Orlicz Spaces and Modular Spaces. Springer, Berlin; 1983. Pringsheim A: Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann. 1900, 53: 289–321. 10.1007/BF01448977 Cooke RG: Infinite Matrices and Sequence Spaces. Macmillan & Co., London; 1950. Robison GM: Divergent double sequences and series. Trans. Am. Math. Soc. 1926, 28: 50–73. 10.1090/S0002-9947-1926-1501332-5 Hamilton HJ: Transformation of multiple sequences. Duke Math. J. 1936, 2: 29–60. 10.1215/S0012-7094-36-00204-1 Maddox IJ: Elements of Functional Analysis. 2nd edition. Cambridge University Press, Cambridge; 1988. Simons S:The sequence spaces l( p v ) and m( p v ) . Proc. Lond. Math. Soc. 1965,15(3):422–436. Yurdakadim T, Tas E: Double sequences and Orlicz functions. Period. Math. Hung. 2013, 67: 47–54. 10.1007/s10998-013-6362-x Mohiuddine SA, Raj K, Alotaibi A: Some paranormed double difference sequence spaces for Orlicz functions and bounded-regular matrices. Abstr. Appl. Anal. 2014., 2014: Article ID 419064