High salt stress in coupled and uncoupled thylakoid membranes: A comparative study
Tóm tắt
The effect of high salt concentration on photosystem II (PS II) electron transport rates and chlorophyll a fluorescence induction kinetics was investigated in coupled and uncoupled spinach thylakoid membranes. With increase in salt concentration, the rates of electron transport mediated by PS II and the F
v/F
m ratio were affected more in uncoupled thylakoids as compared to coupled thylakoid membranes. The uncoupled thylakoid membranes seemed to behave like coupled thylakoid membranes at high NaCl concentration (∼1 M). On increasing the salt concentration, the uncoupler was found to be less effective and Na+ probably worked as a coupling enhancer or uncoupling suppressor. We suggest that positive charge of Na+ mimics the function of positive charge of H+ in the thylakoid lumen in causing coupled state. The function of NaCl (monovalent cation) could be carried out by even lower concentration of Ca2+ (divalent cation) or Al3+ (trivalent cation). We conclude that this function of NaCl as coupling enhancer is not specific, and in general a positive charge is required for causing coupling in uncoupled thylakoid membranes.
Tài liệu tham khảo
Boekema, E. J., Breemen, J. F. L., Roon, H., and Dekker, J. P. (2000) Biochemistry, 39, 12907–12915.
Bacon, Ke. (2000) in Advances in Photosynthesis, Photochemistry and Photophysics, Vol. 10, Kluwer Academic Publishers, Dordrechet, pp. 199–214.
Chitnis, P. R. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 593–626.
Scheller, H. V., Jensen, P. E., Haldrup, C., Lude, C., and Knoetzel, J. (2001) Biochim. Biophys. Acta, 1507, 41–60.
Berry, J., and Bjorkman, O. (1980) Annu. Rev. Plant Physiol., 31, 491–543.
Apostolova, E. L., Dobrikova, A. G., Ivanova, P. I., Petkanchin, I. B., and Taneva, S. G. (2006) J. Photochem. Photobiol. B: Biol., 83, 114–122.
Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., and Sakurai, T. (2002) Funct. Integr. Genom., 2, 282–291.
Liska, A. J., Popov, A., Sunyaev, S., Shevchenko, A., Habermann, B., Bork, P., Karenti, E., and Shevchenko, A. (2004) Proteomics, 4, 2707–2721.
Sayed, O. H. (2003) Photosynthetica, 41, 321–330.
Congming Lu, and Vonshak, A. (1999) New Phytol., 141, 231–239.
Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., and Murata, N. (2000) Plant Physiol., 123, 1047–1056.
Xinqhonq, Y., and Congming Lu (2005) Physiol. Plant., 124, 343–352.
Abdelkader, A. F., Aronsson, H., and Sundqvist, C. (2007) Physiol. Plant., 130, 157–166.
Chapman, D. J., De Felice, J., Davis, K., and Barber, J. (1989) Biochem. J., 258, 357–362.
Jagendorf, A. T., and Smith, M. (1962) Plant Physiol., 37, 135–141.
Kuwabara, T., and Murata, N. (1982) Plant Cell Physiol., 23, 533–539.
Porra, R. J. (1990) Biochim. Biophys. Acta, 1019, 137–141.
Hipkins, M. F., and Baker, N. R. (1986) in Photosynthesis Energy Transduction. A Practical Approach, IRL Press, Oxford, Washington DC, pp. 143–187.
Baker, N. R. (1978) Plant Physiol., 62, 889–893.
Jajoo, A., Bhart, S., and Govindjee (1998) FEBS Lett., 434, 193–196.
Govindjee (1995) Aust. J. Plant Physiol., 22, 131–160.
Joshi, M. K., and Mohanty, P. (2004) in Chlorophyll a Fluorescence — A Signature of Photosynthesis (Papageorgiou, G. C., and Govindjee, eds.) Springer, Dordrecht.