A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem
Tài liệu tham khảo
Osman, 1989, Simulated annealing for permutation flow-shop scheduling, Omega, 17, 551, 10.1016/0305-0483(89)90059-5
Nowicki, 1996, A fast tabu search algorithm for the permutation flow-shop problem, Eur. J. Op. Res., 91, 160, 10.1016/0377-2217(95)00037-2
Liu, 2007, An effective PSO-based memetic algorithm for flow shop scheduling, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 37, 18, 10.1109/TSMCB.2006.883272
Liu, 2011, A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem, Expert Syst. Appl., 38, 4348, 10.1016/j.eswa.2010.09.104
Yenisey, 2014, Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends, Omega, 45, 119, 10.1016/j.omega.2013.07.004
Boukef, 1953, A proposed genetic algorithm coding for flow-shop scheduling problems, Int. J. Comput. Commun. Control, 2, 229, 10.15837/ijccc.2007.3.2356
Chandra, 2009, Permutation flow shop scheduling with earliness and tardiness penalties, Int. J. Prod. Res., 47, 5591, 10.1080/00207540802124301
Xu, 2009, A class of multi-objective expected value decision-making model with birandom coefficients and its application to flow shop scheduling problem, Inf. Sci., 179, 2997, 10.1016/j.ins.2009.04.009
Naderi, 2010, The distributed permutation flowshop scheduling problem, Comput. Op. Res., 37, 754, 10.1016/j.cor.2009.06.019
Gao, 2011, An NEH-based heuristic algorithm for distributed permutation flowshop scheduling problems, Sci. Res. Essays, 6, 3094
Nawaz, 1983, A heuristic algorithm for the m machine, n job flowshop sequencing problem, Omega, 11, 91, 10.1016/0305-0483(83)90088-9
Lin, 2013, Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm, Int. J. Prod. Res., 51, 5029, 10.1080/00207543.2013.790571
Fernandez-Viagas, 2015, A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem, Int. J. Prod. Res., 53, 1111, 10.1080/00207543.2014.948578
H. Liu, L. Gao, A discrete electromagnetism-like mechanism algorithm for solving distributed permutation flowshop scheduling problem, in: Proceedings of the International Conference on Manufacturing Automation, 2010, pp.156–163.
Gao, 2012, A knowledge-based genetic algorithm for permutation flowshop scheduling problems with multiple factories, Int. J. Adv. Comput. Technol., 4, 121
Wang, 2013, An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem, Int. J. Prod. Econ., 145, 387, 10.1016/j.ijpe.2013.05.004
Xu, 2014, An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem, Eng. Optim., 46, 1269, 10.1080/0305215X.2013.827673
Framinan, 2006, A heuristic for scheduling in permutation flow shops with makespan objective subject to maximum tardiness, Int. J. Prod. Econ., 99, 28, 10.1016/j.ijpe.2004.12.004
Fernandez-Viagas, 2015, Efficient non-population-based algorithms for the permutation flowshop scheduling problem with makespan minimisation subject to a maximum tardiness, Comput. Op. Res., 64, 86, 10.1016/j.cor.2015.05.006
Qian, 2008, Scheduling multi-objective job shops using a memetic algorithm based on differential evolution, Int. J. Adv. Manuf. Technol., 35, 1014, 10.1007/s00170-006-0787-9
W. Guo, G. Chen, M. Huang, S. Chen, A discrete particle swarm optimization algorithm for the multiobjective permutation flowshop sequencing problem, in: Proceedings of the International Conference on Fuzzy Information and Engineering, 2007, pp. 323–331.
Garey, 1976, The complexity of flowshop and jobshop scheduling, Math. Op. Res., 1, 117, 10.1287/moor.1.2.117
Chen, 2011, A multi-facet survey on memetic computation, IEEE Trans. Evol. Comput., 15, 591, 10.1109/TEVC.2011.2132725
Neri, 2012, Memetic algorithms and memetic computing optimization: a literature review, Swarm Evol. Comput., 2, 1, 10.1016/j.swevo.2011.11.003
B. Liu L. Wang Y. Jin D. Huang, Designing neural networks using PSO-based memetic algorithm, in: Proceedings of the Advances in Neural Networks, 2007, pp. 219–224
El Fallahi, 2008, A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem, Comput. Op. Res., 35, 1725, 10.1016/j.cor.2006.10.006
Lü, 2010, A memetic algorithm for graph coloring, Eur. J. Op. Res., 203, 241, 10.1016/j.ejor.2009.07.016
Arivudainambi, 2013, Memetic algorithm for minimum energy broadcast problem in wireless ad hoc networks, Swarm Evol. Comput., 12, 57, 10.1016/j.swevo.2013.04.001
A.K. Das, R.J. Marks, M. El-Sharkawi, P. Arabshahi, A. Gray, R-shrink: a heuristic for improving minimum power broadcast trees in wireless networks, in: Proceedings of the IEEE Globecom, 2003, pp. 523–527.
Ludwig, 2013, Memetic algorithms applied to the optimization of workflow compositions, Swarm Evol. Comput., 10, 31
Munkres, 1957, Algorithms for the assignment and transportation problems, J. Soc. Ind. Appl. Math., 5, 32, 10.1137/0105003
Coello, 1999, A comprehensive survey of evolutionary-based multiobjective optimization techniques, Knowl. Inf. Syst., 1, 269, 10.1007/BF03325101
T'kindt, 2006
Minella, 2008, A review and evaluation of multiobjective algorithms for the flowshop scheduling problem, Informs J. Comput., 20, 451, 10.1287/ijoc.1070.0258
Taillard, 1993, Benchmarks for basic scheduling problems, Eur. J. Op. Res., 64, 278, 10.1016/0377-2217(93)90182-M
Li, 2008, An effective pso-based hybrid algorithm for multiobjective permutation flow shop scheduling, IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum., 38, 818, 10.1109/TSMCA.2008.923086
Montgomery, 2005
Hatami, 2015, Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times, Int. J. of Prod. Econ., 169, 76, 10.1016/j.ijpe.2015.07.027
Breslow, 1970, A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship, Biometrika, 57, 579, 10.1093/biomet/57.3.579
Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017