Traditional marketed meats as a reservoir of multidrug-resistant Escherichia coli

International Microbiology - Trang 1-17 - 2023
Fernando Guibert1, Kathya Espinoza1, Clara Taboada-Blanco2, Carla A. Alonso3, Rosario Oporto1, Angie K. Castillo1, Beatriz Rojo-Bezares2, María López2, Yolanda Sáenz2, Maria J. Pons1, Joaquim Ruiz1
1Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - “One Health”, Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Lima, Peru
2Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
3Servicio de Análisis Clínicos, Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain

Tóm tắt

This study aimed to analyze Escherichia coli from marketed meat samples in Peru. Sixty-six E. coli isolates were recovered from 21 meat samples (14 chicken, 7 beef), and antimicrobial resistance levels and the presence of mechanisms of antibiotic resistance, as well as clonal relationships and phylogeny of colistin-resistant isolates, were established. High levels of antimicrobial resistance were detected, with 93.9% of isolates being multi-drug resistant (MDR) and 76.2% of samples possessing colistin-resistant E. coli; of these, 6 samples from 6 chicken samples presenting mcr-1-producer E. coli. Colistin-resistant isolates were classified into 22 clonal groups, while phylogroup A (15 isolates) was the most common. Extended-spectrum β-lactamase- and pAmpC-producing E. coli were found in 18 and 8 samples respectively, with blaCTX-M-55 (28 isolates; 16 samples) and blaCIT (8 isolates; 7 samples) being the most common of each type. Additionally, blaCTX-M-15, blaCTX-M-65, blaSHV-27, blaOXA-5/10-like, blaDHA, blaEBC and narrow-spectrum blaTEM were detected. In addition, 5 blaCTX-M remained unidentified, and no sought ESBL-encoding gene was detected in other 6 ESBL-producer isolates. The tetA, tetE and tetX genes were found in tigecycline-resistant isolates. This study highlights the presence of MDR E. coli in Peruvian food-chain. The high relevance of CTX-M-55, the dissemination through the food-chain of pAmpC, as well as the high frequency of unrelated colistin-resistant isolates is reported.

Tài liệu tham khảo

Alcedo K, Ruiz J, Ochoa TJ, Riveros M (2022) High prevalence of blaCTX-M in fecal commensal Escherichia coli from healthy children. Infect Chemother 54:59–69. https://doi.org/10.3947/ic.2021.0102 Atlaw NA, Keelara S, Correa M, Foster D, Gebreyes W, Aidara-Kane A, Harden L, Thakur S, Cray PJF (2021) Identification of CTX-M type ESBL Escherichia coli from sheep and their abattoir environment using whole-genome sequencing. Pathogens 10:1480. https://doi.org/10.3390/pathogens10111480 Benavides JA, Godreuil S, Opazo-Capurro A, Mahamat OO, Falcon N, Oravcova K, Streicker DG, Shiva C (2022) Long-term maintenance of multidrug-resistant Escherichia coli carried by vampire bats and shared with livestock in Peru. Sci Total Environ 810: 105287. 10.1016/j.scitotenv.2021.152045 Benavides JA, Streicker DG, Gonzales MS, Rojas-Paniagua E, Shiva C (2021) Knowledge and use of antibiotics among low-income small-scale farmers of Peru. Preventive Vet Med 189:105287. https://doi.org/10.1016/j.prevetmed.2021.105287 Bevan ER, Jones AM, Hawkey PM (2017) Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72:2145–2155. https://doi.org/10.1093/jac/dkx146 Binsker U, Käsbohrer A, Hammerl JA (2022) Global colistin use: a review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 46:fuab049. https://doi.org/10.1093/femsre/fuab049 Bogaerts P, Rezende de Castro R, de Mendonça R, Huang TD, Denis O, Glupczynski Y (2013) Validation of carbapenemase and extended-spectrum β-lactamase multiplex endpoint PCR assays according to ISO 15189. J Antimicrob Chemother 68:1576–1582. https://doi.org/10.1093/jac/dkt065 Borowiak M, Baumann B, Fischer J, Thomas K, Deneke C, Hammerl JA, Szabo I, Malorny B (2020) Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011-2018) in Germany. Front Microbiol 11:80. https://doi.org/10.3389/fmicb.2020.00080 Cabrera R, Ruiz J, Marco F, Oliveira I, Arroyo M, Aladueña A, Usera MA, Jiménez de Anta MT, Gascón J, Vila J (2004) Mechanism of resistance to several antimicrobial agents in Salmonella clinical isolates causing traveler’s diarrhea. Antimicrob Agents Chemother 48:3934–3939. https://doi.org/10.1128/AAC.48.10.3934-3939.2004 Capita R, Alonso-Calleja C (2013) Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr 53:11–48. https://doi.org/10.1080/10408398.2010.519837 Carhuaricra D, Duran Gonzales CG, Rodríguez Cueva CL, Ignacion León Y, Silvestre Espejo T, Marcelo Monge G, Rosadio Alcántara RH, Lincopan N, Espinoza LL, Maturrano Hernández L (2022) Occurrence and genomic characterization of mcr-1-harboring Escherichia coli isolates from chicken and pig farms in Lima, Peru. Antibiotics 11:1781. https://doi.org/10.3390/antibiotics11121781 Castillo AK, Espinoza K, Guibert F, Chaves AF, Ruiz J, Pons MJ (2022) Antibiotic susceptibility levels among non-clinical Escherichia coli as a marker of antibiotic pressure in Peru (2009-2019): one health approach. Heliyon 8:e10573. https://doi.org/10.1016/j.heliyon.2022.e10573 Chen SH, Fegan N, Kocharunchitt C, Bowman JP, Duffy LL (2020) Impact of poultry processing operating parameters on bacterial transmission and persistence on chicken carcasses and their shelf life. Appl Environ Microbiol 86:e00594–e00520. https://doi.org/10.1128/AEM.00594-20 Chowdhury PR, McKinnon J, Liu M, Djordjevic SP (2019) Multidrug resistant uropathogenic Escherichia coli ST405 with a novel, composite IS26 transposon in a unique chromosomal location. Front Microbiol 9:3212. https://doi.org/10.3389/fmicb.2018.03212 Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000 Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5:58–65. https://doi.org/10.1111/1758-2229.12019 Clermont O, Condamine B, Dion S, Gordon DM, Denamur E (2021) The E phylogroup of Escherichia coli is highly diverse and mimics the whole E. coli species population structure. Environ Microbiol 23:7139–7151. https://doi.org/10.1111/1462-2920.15742 Clinical and Laboratory Standards Institute (CLSI) (2022) Performance standards for antimicrobial susceptibility testing. Supplement M100 - S32. CLSI, Wayne Coppola N, Cordeiro NF, Trenchi G, Esposito F, Fuga B, Fuentes-Castillo D, Lincopan N, Iriarte A, Bado I, Vignoli R (2022) Imported one-day-old chicks as trojan horses for multidrug-resistant priority pathogens harboring mcr-9, rmtG, and extended-spectrum β-lactamase genes. Appl Environ Microbiol 88:e0167521. https://doi.org/10.1128/AEM.01675-21 de Toro M, Rojo-Bezares B, Vinué L, Undabeitia E, Torres C, Sáenz Y (2010) In vivo selection of aac(6’)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J Antimicrob Chemother 65:1945–1949. https://doi.org/10.1093/jac/dkq262 Dong HJ, Lee S, Kim W, An JU, Kim J, Kim D, Cho S (2017) Prevalence, virulence potential, and pulsed-field gel electrophoresis profiling of Shiga toxin-producing Escherichia coli strains from cattle. Gut Pathog 9:22. https://doi.org/10.1186/s13099-017-0169-x Ellington MJ, Kistler J, Livermore DM, Woodford N (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 59:321–322. https://doi.org/10.1093/jac/dkl481 European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2022) Breakpoint tables for interpretation of MICs and zone diameters version 12. https://www.eucast.org/clinical_breakpoints. Accessed August 8, 2023. Evans BA, Amyes SG (2014) OXA β-lactamases. Clin Microbiol Rev 27:241–263. https://doi.org/10.1128/CMR.00117-13 Flores-Paredes W, Luque N, Albornoz R, Rojas N, Espinoza M, Ruiz J, Pons MJ (2022) Evolution of the prevalence and antimicrobial resistance among Escherichia coli isolated as a cause of infection in patients admitted to a IV-level hospital in Lima, Peru. J Trop Pathol 51:197–212. https://doi.org/10.5216/rpt.v51i3.74360 Gao G, He W, Jiao Y, Cai Z, Lv L, Liu JH (2023) The origin and evolution of IncF33 plasmids based on large-scale data sets. mSystems 8:e0050823. https://doi.org/10.1128/msystems.00508-23 García C, Astocondor L, Rojo-Bezares B, Jacobs J, Sáenz Y (2016) Molecular characterization of extended-spectrum β-lactamase-producer Klebsiella pneumoniae isolates causing neonatal sepsis in Peru. Am J Trop Med Hyg 94:285–288. https://doi.org/10.4269/ajtmh.15-0373 Gautom RK (1997) Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. J Clin Microbiol 35:2977–2980. https://doi.org/10.1128/jcm.35.11.2977-2980.1997 Gonzales E, Patiño L, Ore E, Martínez V, Moreno S, Cruzado NB, Rojas R, Quispe MC, Carbonell I, Villarreal F, Maza G, Olivo J, Vicuña R, Bustamante D (2019) β-lactamasas de espectro extendido tipo CTX-M en aislamientos clínicos de Escherichia coli y Klebsiella pneumoniae en el Instituto Nacional de Salud del Niño-Breña, Lima, Perú. Rev Med Hered 30:242–248. https://doi.org/10.20453/rmh.v30i4.3659 Gonzales-Rodriguez AO, Infante Varillas SF, Reyes-Farias CI, Ladines Fajardo CE, Gonzales Escalante E (2022) Extended-spectrum β-lactamases and virulence factors in uropathogenic Escherichia coli in nursing homes in Lima, Peru. Rev Peru Med Exp Salud Publica 39:98–103. https://doi.org/10.17843/rpmesp.2022.391.8580 Granda A, Riveros M, Martínez-Puchol S, Ocampo K, Laureano-Adame L, Corujo A, Reyes I, Ruiz J, Ochoa TJ (2019) Presence of extended-spectrum β-lactamase, CTX-M-65 in Salmonella enterica serovar Infantis isolated from children with diarrhea in Lima, Peru. J Pediatr Infect Dis 14:194–200. https://doi.org/10.1055/s-0039-1685502 Guardabassi L, Dijkshoorn L, Collard JM, Olsen JE, Dalsgaard A (2000) Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J Med Microbiol 49:929–936. https://doi.org/10.1099/0022-1317-49-10-929 Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C, Zarazaga M (2015) GelJ-a tool for analyzing DNA fingerprint gel images. BMC Bioinform 16:27. https://doi.org/10.1186/s12859-015-0703-0 Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184. https://doi.org/10.1128/AAC.48.6.2179-2184.2004 Horna G, Amaro C, Palacios A, Guerra H, Ruiz J (2019) High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 9(1):10874. https://doi.org/10.1038/s41598-019-47303-4 Ji XW, Liao YL, Zhu YF, Wang HG, Gu L, Gu J, Dong C, Ding HL, Mao XH, Zhu FC, Zou QM (2010) Multilocus sequence typing and virulence factors analysis of Escherichia coli O157 strains in China. J Microbiol 48:849–855. https://doi.org/10.1007/s12275-010-0132-8 Kiratisin P, Apisarnthanarak A, Saifon P, Laesripa C, Kitphati R, Mundy LM (2007) The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum β-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagn Microbiol Infect Dis 58:349–355. https://doi.org/10.1016/j.diagmicrobio.2007.02.005 Kotsakis SD, Flach CF, Razavi M, Larsson DGJ (2019) Characterization of the first OXA-10 natural variant with increased carbapenemase activity. Antimicrob Agents Chemother 63:e01817–e01818. https://doi.org/10.1128/AAC.01817-18 Lescat M, Clermont O, Woerther PL, Glodt J, Dion S, Skurnik D, Djossou F, Dupont C, Perroz G, Picard B, Catzeflis F, Andremont A, Denamur E (2013) Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ Microbiol Rep 5:49–57. https://doi.org/10.1111/j.1758-2229.2012.00374.x Lescat M, Poirel L, Nordmann P (2018) Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes. Diagn Microbiol Infect Dis 92:267–269. https://doi.org/10.1016/j.diagmicrobio.2018.04.010 Liao W, Wang L, Zheng X, Zhang Y, Chen T, Zhou C, Xu Y, Chen L, Zhou T (2022) Evolution of tet(A) variant mediating tigecycline resistance in KPC-2-producing Klebsiella pneumoniae during tigecycline treatment. J Glob Antimicrob Resist 28:168–173. https://doi.org/10.1016/j.jgar.2022.01.007 Linkevicius M, Sandegren L, Andersson DI (2015) Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob Agents Chemother 60:789–796. https://doi.org/10.1128/AAC.02465-15 Lluque A, Mosquito S, Gomes C, Riveros M, Durand D, Tilley DH, Bernal M, Prada A, Ochoa TJ, Ruiz J (2015) Virulence factors and mechanisms of antimicrobial resistance in Shigella strains isolated from Peruvian areas of Lima (Peru). Int J Med Microbiol 305:480–490. https://doi.org/10.1016/j.ijmm.2015.04.005 Lorme F, Maataoui N, Rondinaud E, Esposito-Farèse M, Clermont O, Ruppe E, Arlet G, Genel N, VOYAG-R study group, Matheron S, Andremont A, Armand-Lefevre L (2018) Acquisition of plasmid-mediated cephalosporinase producing Enterobacteriaceae after a travel to the tropics. PLoS One 13:e0206909. https://doi.org/10.1371/journal.pone.0206909 Lucas JR, Morales Cauti S, Salazar Jiménez EP, Eslava Campos C, Alvarado DE (2016) Contaminación por Escherichia coli shigatoxigénica en puestos de expendio de carne de pollo en un distrito de Lima. Rev de Inv Vet Peru 27:618–625. https://doi.org/10.15381/rivep.v27i3.12000 Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x Maguiña-Molina C, Pons MJ, Beltrán MJ, Morales-Cauti S (2021) Multidrug-resistant Salmonella enterica isolated in Paca (Cuniculus paca) carcasses from the Belen Market, Iquitos, Perú. Foodborne Path Dis 18:131–138. https://doi.org/10.1089/fpd.2020.2836 Martínez-Puchol S, Riveros M, Ruidias K, Granda A, Ruiz-Roldán L, Zapata-Cachay C, Ochoa TJ, Pons MJ, Ruiz J (2021) Dissemination of a multidrug resistant CTX-M-65 producer Salmonella enterica serovar Infantis clone between marketed chicken meat and children. Int J Food Microbiol 344:109109. https://doi.org/10.1016/j.ijfoodmicro.2021.109109 McDonnell S, Gutierrez M, Leonard FC, O’Brien T, Kearney P, Swan C, Madigan G, Bracken E, McLernon J, Griffin M, O’Sullivan CM, Egan J, Prendergast DM (2022) A survey of food-borne and antimicrobial resistance-harbouring bacteria in meat by-products from knackeries and associated equipment and kennels. Ir Vet J 75:9. https://doi.org/10.1186/s13620-022-00219-4 McLauchlin J, Aird H, Amar C, Barker C, Dallman T, Elviss N, Jørgensen F, Willis C (2020) Listeria monocytogenes in cooked chicken: detection of an outbreak in the United Kingdom (2016 to 2017) and analysis of L. monocytogenes from unrelated monitoring of foods (2013 to 2017). J Food Prot 83:2041–2052. https://doi.org/10.4315/JFP-20-188 Medina-Pizzali ML, Venkatesh A, Riveros M, Cuicapuza D, Salmon-Mulanovich G, Mäusezahl D, Hartinger SM (2022) Whole-genome characterisation of ESBL-producing E. coli isolated from drinking water and dog faeces from rural Andean households in Peru. Antibiotics 11:692. https://doi.org/10.3390/antibiotics11050692 Ministerio de Desarrollo Agrario y Riego (MDAR) (2023) Boletín estadístico mensual El Agro en Cifras, diciembre 2022. Retrieved from https://cdn.www.gob.pe/uploads/document/file/4131407/Bolet%C3%ADn%20Mensual%20%22El%20Agro%20en%20Cifras%22%20-%20Diciembre%202022.pdf?v=1676570940 Accessed on August 10, 2023 Mlynarcik P, Roderova M, Kolar M (2016) Primer evaluation for PCR and its application for detection of carbapenemases in Enterobacteriaceae. Jundishapur J Microbiol 9:e29314. https://doi.org/10.5812/jjm.29314 Montero L, Irazabal J, Cardenas P, Graham JP, Trueba G (2021) Extended-spectrum β-lactamase producing-Escherichia coli isolated from irrigation waters and produce in Ecuador. Front Microbiol 12:709418. https://doi.org/10.3389/fmicb.2021.70941 Mosquito S, Pons MJ, Riveros M, Ruiz J, Ochoa TJ (2015) Diarrheagenic Escherichia coli phylogroups are associated with antibiotic resistance and duration of diarrheal episode. Sci World J 2015:610403. https://doi.org/10.1155/2015/610403 Murray M, Salvatierra G, Dávila-Barclay A, Ayzanoa B, Castillo-Vilcahuaman C, Huang M, Pajuelo MJ, Lescano AG, Cabrera L, Calderón M, Berg DE, Gilman RH, Tsukayama P (2021) Market chickens as a source of antibiotic-resistant Escherichia coli in a peri-urban community in Lima. Peru. Front Microbiol 12:635871. https://doi.org/10.3389/fmicb.2021.635871 Na G, Zhang W, Gao H, Wang C, Li R, Zhao F, Zhang K, Hou C (2021) Occurrence and antibacterial resistance of culturable antibiotic-resistant bacteria in the Fildes Peninsula, Antarctica. Mar Pollut Bull 162:111829. https://doi.org/10.1016/j.marpolbul.2020.111829 Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15:209–215. https://doi.org/10.1006/mcpr.2001.0363 Nukui Y, Ayibieke A, Taniguchi M, Aiso Y, Shibuya Y, Sonobe K, Nakajima J, Kanehira S, Hadano Y, Tohda S, Koike R, Saito R (2019) Whole-genome analysis of EC129, an NDM-5-, CTX-M-14-, OXA-10- and MCR-1-co-producing Escherichia coli ST167 strain isolated from Japan. J Glob Antimicrob Resist 18:148–150. https://doi.org/10.1016/j.jgar.2019.07.001 Nuramrum S, Chanawong A, Lunha K, Lulitanond A, Sangka A, Wilailuckana C, Angkititrakul S, Charoensri N, Wonglakorn L, Chaimanee P, Chetchotisakd P (2017) Molecular characterization of carbapenemase-nonproducing clinical isolates of Escherichia coli (from a Thai university hospital) with reduced carbapenem susceptibility. Jpn J Infect Dis 70:628–634. https://doi.org/10.7883/yoken.JJID.2017.156 Palma N, Gomes C, Riveros M, García W, Martínez-Puchol S, Ruiz-Roldán L, Mateu J, García C, Jacobs J, Ochoa TJ, Ruiz J (2016) Virulence factors profiles and ESBL production in Escherichia coli causing bacteremia in Peruvian children. Diagn Microbiol Infect Dis 86:70–75. https://doi.org/10.1016/j.diagmicrobio.2016.05.017 Palma N, Pons MJ, Gomes C, Mateu J, Riveros M, García W, Jacobs J, García C, Ochoa TJ, Ruiz J (2017) Resistance to quinolones, cephalosporins and macrolides in Escherichia coli causing bacteraemia in Peruvian children. J Glob Antimicrob Resist 11:28–33. https://doi.org/10.1016/j.jgar.2017.06.011 Pineda Coronel OJ (2019) Disponen prohibir la importación, comercialización, fabricación o elaboración de productos veterinarios que contengan el principio activo colistina (Polimixina E) o cualquiera de sus sales y dictan diversas disposiciones. Resolución Directoral N° 0091-2019-MINAGRI-SENASA-DIAIA Diario Oficial El Peruano. 1832393. Available in: https://busquedas.elperuano.pe/download/url/disponen-prohibir-la-importacion-comercializacion-fabricac-resolucion-directoral-no-0091-2019-minagri-senasa-diaia-1832393-1. Accessed on August 10, 2023. Poirel L, Jayol A, Nordmann P (2017) Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30:557–596. https://doi.org/10.1128/CMR.00064-16 Pons MJ, de Toro M, Medina S, Saénz Y, Ruiz J (2020) Antimicrobianos, resistencia antibacteriana y salud sostenible. South Sustain 1:e001. https://doi.org/10.21142/SS-0101-2020-001 Pons MJ, Marí-Almirall M, Ymaña B, Moya-Salazar J, Muñoz L, Sauñe S, Salazar-Hernández R, Vila J, Roca I (2020) Spread of ST348 Klebsiella pneumoniae producing NDM-1 in a Peruvian hospital. Microorganisms 8:1392. https://doi.org/10.3390/microorganisms8091392 Ramos S, Silva V, Dapkevicius MLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P (2020) Escherichia coli as commensal and pathogenic bacteria among food-producing animals: health implications of extended spectrum β-lactamase (ESBL) production. Animals 10:2239. https://doi.org/10.3390/ani10122239 Riveros M, Pons MJ, Durand D, Ochoa TJ, Ruiz J (2023) Class 1 and 2 integrons in Escherichia coli strains isolated from diarrhea and bacteremia in children less than 2 years of age from Peru. Am J Trop Med Hyg 108:181–186. https://doi.org/10.4269/ajtmh.22-0239 Rodríguez I, Figueiredo AS, Sousa M, Aracil-Gisbert S, Fernández-de-Bobadilla MD, Lanza VF, Rodríguez C, Zamora J, Loza E, Mingo P, Brooks CJ, Cantón R, Baquero F, Coque TM (2021) A 21-year survey of Escherichia coli from bloodstream infections (BSI) in a tertiary hospital reveals how community-hospital dynamics of B2 phylogroup clones influence local BSI rates. mSphere 6:e0086821. https://doi.org/10.1128/msphere.00868-21 Ruiz J (2019) Transferable mechanisms of quinolone resistance from 1998 onward. Clin Microbiol Rev 32:e00007-e00019. https://doi.org/10.1128/CMR.00007-19 Ruiz J, Mensa L, Pons MJ, Vila J, Gascón J (2008) Development of Escherichia coli rifaximin resistant mutants: frequency of selection and stability. J Antimicrob Chemother 61:1016–1019. https://doi.org/10.1093/jac/dkn078 Ruiz J, Pons MJ, Mosquito S, Ochoa TJ, Saénz Y (2021) Caracterización de Escherichia coli D7111 productora de β-lactamasa TEM-176. Rev Peru Med Exp Salud Publica 38:130–135. https://doi.org/10.17843/rpmesp.2021.381.6727 Ruiz-Roldán L, Martínez-Puchol S, Gomes C, Palma N, Riveros M, Ocampo K, Durand D, Ochoa TJ, Ruiz J, Pons MJ (2018) Presencia de Enterobacteriaceae y Escherichia coli multirresistente a antimicrobianos en carne adquirida en mercados tradicionales en Lima. Rev Peru Med Exp Salud Publica 35:425–432. https://doi.org/10.17843/rpmesp.2018.353.3737 Sirsat SA, Kim K, Gibson KE, Crandall PG, Ricke SC, Neal JA (2014) Tracking microbial contamination in retail environments using fluorescent powder - a retail delicatessen environment example. J Vis Exp 85:51402. https://doi.org/10.3791/51402 Skjøt-Rasmussen L, Ejrnæs K, Lundgren B, Hammerum AM, Frimodt-Møller N (2012) Virulence factors and phylogenetic grouping of Escherichia coli isolates from patients with bacteraemia of urinary tract origin relate to sex and hospital- vs. community-acquired origin. Int J Med Microbiol 302:129–134. https://doi.org/10.1016/j.ijmm.2012.03.002 Stephens C, Arismendi T, Wright M, Hartman A, Gonzalez A, Gill M, Pandori M, Hess D (2020) F plasmids are the major carriers of antibiotic resistance genes in human-associated commensal Escherichia coli. mSphere 5:e00709–e00720. https://doi.org/10.1128/mSphere.00709-20 Xiong Y, Han Y, Zhao Z, Gao W, Ma Y, Jiang S, Wang M, Zhang Q, Zhou Y, Chen Y (2021) Impact of carbapenem heteroresistance among multidrug-resistant ESBL/AmpC-producing Klebsiella pneumoniae clinical isolates on antibiotic treatment in experimentally infected mice. Infect Drug Resist 14:5639–5650. https://doi.org/10.2147/IDR.S340652 Zavala-Flores E, Salcedo-Matienzo J (2020) Medicación prehospitalaria en pacientes hospitalizados por COVID-19 en un hospital público de Lima-Perú. Acta Med Peru 37:393–395. https://doi.org/10.35663/amp.2020.373.1277 Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, Xiao Y (2014) Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis 14:659. https://doi.org/10.1186/s12879-014-0659-0 Zurita J, Yánez F, Sevillano G, Ortega-Paredes D, Paz Y, Miño A (2020) Ready-to-eat street food: a potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett Appl Microbiol 70:203–209. https://doi.org/10.1111/lam.13263