Ensemble controllability and discrimination of perturbed bilinear control systems on connected, simple, compact Lie groups
Tài liệu tham khảo
F. Albertini, D. D׳Alessandro, Notions of controllability for quantum mechanical systems, in: The 40th IEEE Conference on Decision and Control, vol. 2, Orlando, FL, 2001, pp. 1589–1594.
Altafini, 2002, Controllability of quantum mechanical systems by root space decomposition of su(N ), J. Math. Phys., 43, 2051, 10.1063/1.1467611
Altafini, 2009, Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds, Syst. Control Lett., 58, 213, 10.1016/j.sysconle.2008.10.008
Aubin, 1963, Un théorème de compacité, C. R. Acad. Sci. Paris, 256, 5042
Ball, 1982, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20, 575, 10.1137/0320042
Baudouin, 2008, Constructive solution of a bilinear optimal control problem for a Schrödinger equation, Syst. Control Lett., 57, 453, 10.1016/j.sysconle.2007.11.002
Beauchard, 2005, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84, 851, 10.1016/j.matpur.2005.02.005
Beauchard, 2010, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94, 520, 10.1016/j.matpur.2010.04.001
Beauchard, 2010, Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations, Commun. Math. Phys., 296, 525, 10.1007/s00220-010-1008-9
Belhadj, 2008, A stable toolkit method in quantum control, J. Phys. A: Math. Theor., 41, 362001, 10.1088/1751-8113/41/36/362001
A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, in: AIMS Series on Applied Mathematics, vol. 2, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.
D׳Alessandro, 2001, Small time controllability of systems on compact Lie groups and spin angular momentum, J. Math. Phys., 42, 4488, 10.1063/1.1388197
de Graaf, 2000, vol. 56
Girardeau, 1997, Kinematical bounds on evolution and optimization of mixed quantum states, Phys. Rev. A, 55, R1565, 10.1103/PhysRevA.55.R1565
Girardeau, 1998, Kinematical bounds on optimization of observables for quantum states, Phys. Rev. A, 58, 2684, 10.1103/PhysRevA.58.2684
S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, American Mathematical Society, vol. 34, Providence, RI, 2001, Corrected Reprint of the 1978 Original.
D. Hocker, C. Brif, M.D. Grace, A. Donovan, T.-S. Ho, K.W. Moore Tibbetts, R. Wu, H. Rabitz, Characterization of control noise effects in optimal quantum unitary dynamics, ArXiv e-printsVersion 1. arXiv:1405.5950.
Huang, 1983, On the controllability of quantum mechanical systems, J. Math. Phys., 24, 2608, 10.1063/1.525634
Judson, 1990, Optimal design of external fields for controlling molecular motion-application to rotation, J. Mol. Struct., 223, 425, 10.1016/0022-2860(90)80485-3
Jurdjevic, 1972, Control systems on Lie groups, J. Differ. Equ., 12, 313, 10.1016/0022-0396(72)90035-6
Khalil, 1996
Khodjasteh, 2009, Dynamical quantum error correction of unitary operations with bounded controls, Phys. Rev. A, 80, 032314, 10.1103/PhysRevA.80.032314
Khodjasteh, 2009, Dynamically error-corrected gates for universal quantum computation, Phys. Rev. Lett., 102, 080501, 10.1103/PhysRevLett.102.080501
Leite, 1988, Controllability on classical Lie groups, Math. Control Signals Syst., 1, 31, 10.1007/BF02551234
J.-S. Li, N. Khaneja, Ensemble controllability of the Bloch equations, in: The 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 2006, pp. 13–15.
Li, 2006, Control of inhomogeneous quantum ensembles, Phys. Rev. A, 73, 030302, 10.1103/PhysRevA.73.030302
Li, 2009, Ensemble control of Bloch equations, IEEE Trans. Autom. Control, 54, 528, 10.1109/TAC.2009.2012983
Li, 2002, Optimal dynamic discrimination of similar molecules through quantum learning control, J. Phys. Chem. B, 106, 8125, 10.1021/jp0204657
Maday, 2003, New formulations of monotonically convergent quantum control algorithms, J. Chem. Phys., 118, 8191, 10.1063/1.1564043
Moore, 2012, Manipulating molecules, Nat. Chem., 4, 72, 10.1038/nchem.1252
Nijmeiher, 1990
Online Controllability Calculator. URL: 〈https://www.ceremade.dauphine.fr/~turinici/index.php/fr/recherche/calculator.html〉.
Rabitz, 2007, Controlling quantum dynamics regardless of laser beam spatial profile and molecular orientation, Phys. Rev. A: At. Mol. Opt. Phys., 75, 043409, 10.1103/PhysRevA.75.043409
Ramakrishna, 1995, Controllability of molecular-systems, Phys. Rev. A, 51, 960, 10.1103/PhysRevA.51.960
Rice, 2000
Schirmer, 2001, Complete controllability of quantum systems, Phys. Rev. A, 63, 063410, 10.1103/PhysRevA.63.063410
Schirmer, 2005, Controllability of multi-partite quantum systems and selective excitation of quantum dots, J. Opt. B, 7, S293, 10.1088/1464-4266/7/10/013
Schirmer, 1999, Efficient algorithm for optimal control of mixed-state quantum systems, Phys. Rev. A, 61, 012101, 10.1103/PhysRevA.61.012101
Sola, 2004, The influence of laser field noise on controlled quantum dynamics, J. Chem. Phys., 120, 9009, 10.1063/1.1691803
Sontag, 1998
Souza, 2012, Experimental protection of quantum gates against decoherence and control errors, Phys. Rev. A, 86, 050301, 10.1103/PhysRevA.86.050301
Sugny, 2005, Control of mixed-state quantum systems by a train of short pulses, Phys. Rev. A: At. Mol. Opt. Phys., 72, 032704, 10.1103/PhysRevA.72.032704
Tannor, 1992, Control of photochemical branching: novel procedures for finding optimal pulses and global upper bounds, 347
T.-J. Tarn, J. Clark, D. Lucarelli, Controllability of quantum mechanical systems with continuous spectra, in: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1, 2000, pp. 943–948. http://dx.doi.org/10.1109/CDC.2000.912894.
Tersigni, 1990, On using shaped light pulses to control the selectivity of product formation in a chemical reaction, J. Chem. Phys., 93, 1670, 10.1063/1.459680
Turinici, 2000, On the controllability of bilinear quantum systems, vol. 74, 75
Turinici, 2001, Quantum wave function controllability, Chem. Phys., 267, 1, 10.1016/S0301-0104(01)00216-6
Turinici, 2003, Wavefunction controllability in quantum systems, J. Phys. A: Math. Theor., 36, 2565, 10.1088/0305-4470/36/10/316
Turinici, 2004, Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules, Phys. Rev. A, 70, 063412, 10.1103/PhysRevA.70.063412
Turinici, 2003, Optimal discrimination of multiple quantum systems, J. Phys. A: Math. Gen., 37, 273, 10.1088/0305-4470/37/1/019
V.S. Varadarajan, Lie groups, Lie algebras, and their representations, in: Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984, doi:10.1007/978-1-4612-1126-6 (Reprint of the 1974 edition.).
Zhu, 1998, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator, J. Chem. Phys., 109, 385, 10.1063/1.476575