Ensemble controllability and discrimination of perturbed bilinear control systems on connected, simple, compact Lie groups

European Journal of Control - Tập 22 - Trang 23-29 - 2015
Mohamed Belhadj1, Julien Salomon2, Gabriel Turinici2,3
1Département de Mathématiques, Institut Supérieur des Mathématiques Appliquées et d׳Informatique de Kairouan, Av. Assad Ibn El Fourat, 3100 Kairouan, Tunisia
2CEREMADE, Université Paris Dauphine, Pl. du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France
3Institut universitaire de France, France

Tài liệu tham khảo

F. Albertini, D. D׳Alessandro, Notions of controllability for quantum mechanical systems, in: The 40th IEEE Conference on Decision and Control, vol. 2, Orlando, FL, 2001, pp. 1589–1594. Altafini, 2002, Controllability of quantum mechanical systems by root space decomposition of su(N ), J. Math. Phys., 43, 2051, 10.1063/1.1467611 Altafini, 2009, Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds, Syst. Control Lett., 58, 213, 10.1016/j.sysconle.2008.10.008 Aubin, 1963, Un théorème de compacité, C. R. Acad. Sci. Paris, 256, 5042 Ball, 1982, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20, 575, 10.1137/0320042 Baudouin, 2008, Constructive solution of a bilinear optimal control problem for a Schrödinger equation, Syst. Control Lett., 57, 453, 10.1016/j.sysconle.2007.11.002 Beauchard, 2005, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84, 851, 10.1016/j.matpur.2005.02.005 Beauchard, 2010, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 94, 520, 10.1016/j.matpur.2010.04.001 Beauchard, 2010, Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations, Commun. Math. Phys., 296, 525, 10.1007/s00220-010-1008-9 Belhadj, 2008, A stable toolkit method in quantum control, J. Phys. A: Math. Theor., 41, 362001, 10.1088/1751-8113/41/36/362001 A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, in: AIMS Series on Applied Mathematics, vol. 2, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007. D׳Alessandro, 2001, Small time controllability of systems on compact Lie groups and spin angular momentum, J. Math. Phys., 42, 4488, 10.1063/1.1388197 de Graaf, 2000, vol. 56 Girardeau, 1997, Kinematical bounds on evolution and optimization of mixed quantum states, Phys. Rev. A, 55, R1565, 10.1103/PhysRevA.55.R1565 Girardeau, 1998, Kinematical bounds on optimization of observables for quantum states, Phys. Rev. A, 58, 2684, 10.1103/PhysRevA.58.2684 S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, American Mathematical Society, vol. 34, Providence, RI, 2001, Corrected Reprint of the 1978 Original. D. Hocker, C. Brif, M.D. Grace, A. Donovan, T.-S. Ho, K.W. Moore Tibbetts, R. Wu, H. Rabitz, Characterization of control noise effects in optimal quantum unitary dynamics, ArXiv e-printsVersion 1. arXiv:1405.5950. Huang, 1983, On the controllability of quantum mechanical systems, J. Math. Phys., 24, 2608, 10.1063/1.525634 Judson, 1990, Optimal design of external fields for controlling molecular motion-application to rotation, J. Mol. Struct., 223, 425, 10.1016/0022-2860(90)80485-3 Jurdjevic, 1972, Control systems on Lie groups, J. Differ. Equ., 12, 313, 10.1016/0022-0396(72)90035-6 Khalil, 1996 Khodjasteh, 2009, Dynamical quantum error correction of unitary operations with bounded controls, Phys. Rev. A, 80, 032314, 10.1103/PhysRevA.80.032314 Khodjasteh, 2009, Dynamically error-corrected gates for universal quantum computation, Phys. Rev. Lett., 102, 080501, 10.1103/PhysRevLett.102.080501 Leite, 1988, Controllability on classical Lie groups, Math. Control Signals Syst., 1, 31, 10.1007/BF02551234 J.-S. Li, N. Khaneja, Ensemble controllability of the Bloch equations, in: The 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 2006, pp. 13–15. Li, 2006, Control of inhomogeneous quantum ensembles, Phys. Rev. A, 73, 030302, 10.1103/PhysRevA.73.030302 Li, 2009, Ensemble control of Bloch equations, IEEE Trans. Autom. Control, 54, 528, 10.1109/TAC.2009.2012983 Li, 2002, Optimal dynamic discrimination of similar molecules through quantum learning control, J. Phys. Chem. B, 106, 8125, 10.1021/jp0204657 Maday, 2003, New formulations of monotonically convergent quantum control algorithms, J. Chem. Phys., 118, 8191, 10.1063/1.1564043 Moore, 2012, Manipulating molecules, Nat. Chem., 4, 72, 10.1038/nchem.1252 Nijmeiher, 1990 Online Controllability Calculator. URL: 〈https://www.ceremade.dauphine.fr/~turinici/index.php/fr/recherche/calculator.html〉. Rabitz, 2007, Controlling quantum dynamics regardless of laser beam spatial profile and molecular orientation, Phys. Rev. A: At. Mol. Opt. Phys., 75, 043409, 10.1103/PhysRevA.75.043409 Ramakrishna, 1995, Controllability of molecular-systems, Phys. Rev. A, 51, 960, 10.1103/PhysRevA.51.960 Rice, 2000 Schirmer, 2001, Complete controllability of quantum systems, Phys. Rev. A, 63, 063410, 10.1103/PhysRevA.63.063410 Schirmer, 2005, Controllability of multi-partite quantum systems and selective excitation of quantum dots, J. Opt. B, 7, S293, 10.1088/1464-4266/7/10/013 Schirmer, 1999, Efficient algorithm for optimal control of mixed-state quantum systems, Phys. Rev. A, 61, 012101, 10.1103/PhysRevA.61.012101 Sola, 2004, The influence of laser field noise on controlled quantum dynamics, J. Chem. Phys., 120, 9009, 10.1063/1.1691803 Sontag, 1998 Souza, 2012, Experimental protection of quantum gates against decoherence and control errors, Phys. Rev. A, 86, 050301, 10.1103/PhysRevA.86.050301 Sugny, 2005, Control of mixed-state quantum systems by a train of short pulses, Phys. Rev. A: At. Mol. Opt. Phys., 72, 032704, 10.1103/PhysRevA.72.032704 Tannor, 1992, Control of photochemical branching: novel procedures for finding optimal pulses and global upper bounds, 347 T.-J. Tarn, J. Clark, D. Lucarelli, Controllability of quantum mechanical systems with continuous spectra, in: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1, 2000, pp. 943–948. http://dx.doi.org/10.1109/CDC.2000.912894. Tersigni, 1990, On using shaped light pulses to control the selectivity of product formation in a chemical reaction, J. Chem. Phys., 93, 1670, 10.1063/1.459680 Turinici, 2000, On the controllability of bilinear quantum systems, vol. 74, 75 Turinici, 2001, Quantum wave function controllability, Chem. Phys., 267, 1, 10.1016/S0301-0104(01)00216-6 Turinici, 2003, Wavefunction controllability in quantum systems, J. Phys. A: Math. Theor., 36, 2565, 10.1088/0305-4470/36/10/316 Turinici, 2004, Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules, Phys. Rev. A, 70, 063412, 10.1103/PhysRevA.70.063412 Turinici, 2003, Optimal discrimination of multiple quantum systems, J. Phys. A: Math. Gen., 37, 273, 10.1088/0305-4470/37/1/019 V.S. Varadarajan, Lie groups, Lie algebras, and their representations, in: Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984, doi:10.1007/978-1-4612-1126-6 (Reprint of the 1974 edition.). Zhu, 1998, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator, J. Chem. Phys., 109, 385, 10.1063/1.476575