Modelos experimentales murinos en la esclerosis lateral amiotrófica. Puesta al día

L. Moreno-Jiménez1, M.S. Benito-Martín1, I. Sanclemente-Alamán1, J.A. Matías-Guiu2, F. Sancho-Bielsa3, A. Canales-Aguirre4, J.C. Mateos-Díaz5, J. Matías-Guiu1,2, J. Aguilar6, U. Gómez-Pinedo1
1Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
2Departamento de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
3Departamento de Fisiología, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, España
4Unidad Preclínica, CIATEJ-CONACyT, Guadalajara, México
5Departamento de Biotecnología Industrial, CIATEJ-CONACyT, Zapopan, México
6Laboratorio de Neurofisiología Experimental y Circuitos Neuronales del Hospital Nacional de Parapléjicos, Toledo, España

Tài liệu tham khảo

Philips, 2015, Rodent models of amyotrophic lateral sclerosis, Curr Protoc Pharmacol., 69, 5, 10.1002/0471141755.ph0567s69 Chiò, 2017, Pain in amyotrophic lateral sclerosis, Lancet Neurol., 16, 144, 10.1016/S1474-4422(16)30358-1 Al-Chalabi, 2017, Gene discovery in amyotrophic lateral sclerosis: Implications for clinical management, Nat Rev Neurol., 13, 96, 10.1038/nrneurol.2016.182 Tovar-y-Romo, 2009, Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis, Mol Neurodegeneration., 4, 31, 10.1186/1750-1326-4-31 Tan, 2020, LanCL1 promotes motor neuron survival and extends the lifespan of amyotrophic lateral sclerosis mice, Cell Death Differ., 27, 1369, 10.1038/s41418-019-0422-6 Brown, 2017, Amyotrophic lateral sclerosis, N Engl J Med., 377, 162, 10.1056/NEJMra1603471 Galán, 2007, [Experimental models of amyotrophic lateral sclerosis], Neurologia (Barcelona, Spain)., 22, 381 Mancuso, 2015, Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic, Prog Neurobiol., 133, 1, 10.1016/j.pneurobio.2015.07.004 Gómez-Pinedo, 2018, La infusión intracerebroventricular prolongada de líquido cefalorraquídeo procedente de pacientes con esclerosis lateral amiotrófica provoca cambios histológicos en el cerebro y la médula espinal de la rata similares a los hallados en la enfermedad, Neurologia, 33, 211, 10.1016/j.nrl.2016.07.002 Nomura, 2019, Imaging hypoxic stress and the treatment of amyotrophic lateral sclerosis with dimethyloxalylglycine in a mice model, Neuroscience., 415, 31, 10.1016/j.neuroscience.2019.06.025 Falconer, 1956, Wobbler (wr), Mouse News Lett., 15, 22 Ott, 2015, Implementation of a manual for working with wobbler mice and criteria for discontinuation of the experiment, Ann Anat, 200, 118, 10.1016/j.aanat.2015.03.007 Moser, 2013, The wobbler mouse, an ALS animal model, Mol Genet Genomics., 288, 207, 10.1007/s00438-013-0741-0 Schmitt-John, 2015, VPS54 and the wobbler mouse, Front Neurosci., 9, 10.3389/fnins.2015.00381 Broch-Lips, 2013, Neuro-muscular function in the wobbler murine model of primary motor neuronopathy, Exp Neurol., 248, 406, 10.1016/j.expneurol.2013.07.005 Boillée, 2003, The wobbler mouse, Mol Neurobiol., 28, 65, 10.1385/MN:28:1:65 Meyer, 2020, Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration, Brain Res., 1727, 146551, 10.1016/j.brainres.2019.146551 Rosen, 1993, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature., 362, 59, 10.1038/362059a0 Swarup, 2011, ALS pathogenesis: Recent insights from genetics and mouse models, Prog Neuropsychopharmacol Biol Psychiatry., 35, 363, 10.1016/j.pnpbp.2010.08.006 McGoldrick, 2013, Rodent models of amyotrophic lateral sclerosis, Biochim Biophys Acta., 1832, 1421, 10.1016/j.bbadis.2013.03.012 Van Damme, 2017, Modelling amyotrophic lateral sclerosis: Progress and possibilities, Dis Model Mech., 10, 537, 10.1242/dmm.029058 Picher-Martel, 2016, From animal models to human disease: A genetic approach for personalized medicine in ALS, Acta Neuropathol Commun., 4, 70, 10.1186/s40478-016-0340-5 Fogarty, 2017, Motor areas show altered dendritic structure in an amyotrophic lateral sclerosis mouse model, Front Neurosci., 11, 10.3389/fnins.2017.00609 Ramírez-Jarquín, 2017, Chronic infusion of SOD1G93A astrocyte-secreted factors induces spinal motoneuron degeneration and neuromuscular dysfunction in healthy rats, J Cell Physiol., 232, 2610, 10.1002/jcp.25827 Spalloni, 2016, Cognitive impairment in amyotrophic lateral sclerosis, clues from the SOD1 mouse, Neurosci Biobehav Rev., 60, 12, 10.1016/j.neubiorev.2015.11.006 Hardiman, 2017, Amyotrophic lateral sclerosis, Nat Rev Dis Primers., 3, 17071, 10.1038/nrdp.2017.71 Gois, 2020, In vitro and in vivo models of amyotrophic lateral sclerosis: An updated overview, Brain Res Bull., 159, 32, 10.1016/j.brainresbull.2020.03.012 Marcuzzo, 2017, A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis, Exp Neurol., 293, 43, 10.1016/j.expneurol.2017.03.018 Park, 2015, Mechanisms of muscle denervation in aging: Insights from a mouse model of amyotrophic lateral sclerosis, Aging and Disease., 6, 380, 10.14336/AD.2015.0506 Seven, 2018, Compensatory plasticity in diaphragm and intercostal muscle utilization in a rat model of ALS, Exp Neurol., 299, 148, 10.1016/j.expneurol.2017.10.015 Wier, 2019, Muscle contractility dysfunction precedes loss of motor unit connectivity in SOD1(G93A) mice, Muscle & Nerve., 59, 254, 10.1002/mus.26365 Jiang, 2017, Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis, Neuroscience., 362, 33, 10.1016/j.neuroscience.2017.08.041 Wong, 1995, An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria, Neuron., 14, 1105, 10.1016/0896-6273(95)90259-7 El Oussini, 2017, Degeneration of serotonin neurons triggers spasticity in amyotrophic lateral sclerosis, Ann Neurol., 82, 444, 10.1002/ana.25030 Martineau, 2020, Sex-specific differences in motor-unit remodeling in a mouse model of ALS, Eneuro, 7, 10.1523/ENEURO.0388-19.2020 De Munck, 2015, Morphometric and neurochemical alterations found in l -BMAA treated rats, Environ Toxicol Pharmacol., 39, 1232, 10.1016/j.etap.2015.04.022 Fabbrizio, 2020, P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis, Brain Pathol., 30, 272, 10.1111/bpa.12774 Archbold, 2018, TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia, Sci Rep., 8, 4606, 10.1038/s41598-018-22858-w Williamson, 2019, Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo, Hum Mol Genet., 28, 3584, 10.1093/hmg/ddz190 Wegorzewska, 2009, TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration, Proc Natl Acad Sci U S A., 106, 18809, 10.1073/pnas.0908767106 Dance, 2010, TDP-43 models coverage, J Alzheimers Dis., 21, 1403, 10.3233/JAD-2010-101543 Gendron, 2011, Rodent models of TDP-43 proteinopathy: Investigating the mechanisms of TDP-43-mediated neurodegeneration, J Mol Neurosci., 45, 486, 10.1007/s12031-011-9610-7 Xu, 2013, The pathological phenotypes of human TDP-43 transgenic mouse models are independent of downregulation of mouse Tdp-43, PLoS ONE., 8, e69864, 10.1371/journal.pone.0069864 Ke, 2015, Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS, Acta Neuropathol., 130, 661, 10.1007/s00401-015-1486-0 Scekic-Zahirovic, 2017, Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis, Acta Neuropathologica., 133, 887, 10.1007/s00401-017-1687-9 Huang, 2011, FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, PLoS Genet, 7, e1002011, 10.1371/journal.pgen.1002011 Devoy, 2017, Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in FUSDelta14 knockin mice, Brain., 140, 2797, 10.1093/brain/awx248 Van Den Bosch, 2011, Genetic rodent models of amyotrophic lateral sclerosis, J Biomed Biotechnol., 2011, 348765, 10.1155/2011/348765 Nolan, 2016, Pathogenesis of FUS-associated ALS and FTD: Insights from rodent models, Acta Neuropathol Commun, 4, 99, 10.1186/s40478-016-0358-8 Funikov, 2018, FUS(1-359) transgenic mice as a model of ALS: Pathophysiological and molecular aspects of the proteinopathy, Neurogenetics., 19, 189, 10.1007/s10048-018-0553-9 Rossaert, 2019, Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model, Acta Neuropathol Commun., 7, 107, 10.1186/s40478-019-0750-2 Koppers, 2015, C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits, Ann Neurol., 78, 426, 10.1002/ana.24453 Jiang, 2016, Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs, Neuron., 90, 535, 10.1016/j.neuron.2016.04.006 Lutz, 2018, Mouse models of ALS: Past, present and future, Brain Res., 1693, 1, 10.1016/j.brainres.2018.03.024 Batra, 2017, Mouse models of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis/frontotemporal dementia, Front Cell Neurosci., 11, 10.3389/fncel.2017.00196 Hao, 2019, Motor dysfunction and neurodegeneration in a C9orf72 mouse line expressing poly-PR, Nat Commun., 10, 2906, 10.1038/s41467-019-10956-w Liu, 2016, C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD, Neuron, 90, 521, 10.1016/j.neuron.2016.04.005 Choi, 2019, C9ORF72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo, Nat Neurosci., 22, 851, 10.1038/s41593-019-0397-0 De Munck, 2013, β-N-methylamino- l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): The first step towards an experimental model for sporadic ALS, Environ Toxicol Pharmacol., 36, 243, 10.1016/j.etap.2013.04.007 Lee, 2012, Weak BMAA toxicity compares with that of the dietary supplement beta-alanine, Neurobiol Aging., 33, 1440, 10.1016/j.neurobiolaging.2010.11.024 Tedeschi, 2019, The activation of mucolipin TRP channel 1 (TRPML1) protects motor neurons from L-BMAA neurotoxicity by promoting autophagic clearance, Sci Rep., 9, 10743, 10.1038/s41598-019-46708-5 Sankaranarayani, 2010, Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients, Behav Brain Res., 206, 109, 10.1016/j.bbr.2009.09.009 Matías-Guiu, 2010, La citotoxicidad del líquido cefalorraquídeo en la esclerosis lateral amiotrófica, Neurologia., 25, 364, 10.1016/j.nrl.2010.01.006 Gunasekaran, 2009, Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Nav 1.6 and Kv 1.6 channel expression in rat spinal motor neurons, Brain Res., 1255, 170, 10.1016/j.brainres.2008.11.099 Vijayalakshmi, 2011, Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients, Neurobiol Dis., 41, 695, 10.1016/j.nbd.2010.12.005 Shanmukha, 2018, Sporadic amyotrophic lateral sclerosis (SALS) —skeletal muscle response to cerebrospinal fluid from SALS patients in a rat model, Dis Model Mech., 11, 10.1242/dmm.031997