Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru

Jennifer F. Biddle1, Julius S. Lipp2, Mark A. Lever3, Karen G. Lloyd3, Ketil Bernt Sørensen3, R. Anderson4,2, Helen F. Fredricks5, Marcus Elvert2, Timothy Kelly6,7, Daniel P. Schrag8, Mitchell L. Sogin9, Jean E. Brenchley10,7, Andreas Teske3, Christopher H. House6,7, Kai‐Uwe Hinrichs5,2
1Pennsylvania State Astrobiology Research Center, Pennsylvania State University, University Park, PA 16802, USA.
2Organic Geochemistry Group, Deutsche Forschungsgemeinschaft Research Center for Ocean Margins and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany;
3Department of Marine Sciences, University of North Carolina, Chapel Hill, NC 27599;
4Carleton College, Northfield, MN 55057;
5Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;
6Geosciences and
7Pennsylvania State Astrobiology Research Center and Departments of
8Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138; and
9The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
10Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802

Tóm tắt

Studies of deeply buried, sedimentary microbial communities and associated biogeochemical processes during Ocean Drilling Program Leg 201 showed elevated prokaryotic cell numbers in sediment layers where methane is consumed anaerobically at the expense of sulfate. Here, we show that extractable archaeal rRNA, selecting only for active community members in these ecosystems, is dominated by sequences of uncultivated Archaea affiliated with the Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group, whereas known methanotrophic Archaea are not detectable. Carbon flow reconstructions based on stable isotopic compositions of whole archaeal cells, intact archaeal membrane lipids, and other sedimentary carbon pools indicate that these Archaea assimilate sedimentary organic compounds other than methane even though methanotrophy accounts for a major fraction of carbon cycled in these ecosystems. Oxidation of methane by members of Marine Benthic Group B and the Miscellaneous Crenarchaeotal Group without assimilation of methane–carbon provides a plausible explanation. Maintenance energies of these subsurface communities appear to be orders of magnitude lower than minimum values known from laboratory observations, and ecosystem-level carbon budgets suggest that community turnover times are on the order of 100–2,000 years. Our study provides clues about the metabolic functionality of two cosmopolitan groups of uncultured Archaea.

Từ khóa


Tài liệu tham khảo

R. J. Parkes, B. A. Cragg, P. Wellsbury Hydrogeol. J 8, 11–28 (2000).

W. B. Whitman, D. C. Coleman, W. J. Wiebe Proc. Natl. Acad. Sci. USA 95, 6578–6583 (1998).

S. D’Hondt, S. Rutherford, A. J. Spivack Science 295, 2067–2070 (2002).

N. Iversen, B. B. Jørgensen Limnol. Oceanogr 30, 944–955 (1985).

K.-U. Hinrichs, A. Boetius Ocean Margin Systems, eds G. Wefer, D. Billet, D. Hebbeln, B. B. Jørgensen, M. Schlüter, T. van Weering (Springer, Berlin), pp. 457–477 (2002).

S. L. D’Hondt B. B. Jørgensen D. J. Miller (Ocean Drilling Program Texas A & M University College Station TX) Vol. 201 (2003).

S. L. D’Hondt, B. B. Jørgensen, D. J. Miller, A. Batzke, R. Blake, B. A. Cragg, H. Cypionka, G. R. Dickens, T. Ferdelman, K.-U. Hinrichs, et al. Science 306, 2216–2221 (2004).

F. Inagaki, T. Nunoura, S. Nakagawa, A. Teske, M. Lever, A. Lauer, M. Suzuki, K. Takai, M. Delwiche, F. S. Colwell, et al. Proc. Natl. Acad. Sci. USA 103, 2815–2820 (2006).

L. Mauclaire, K. Zepp, P. Meister, J. McKenzie Geobiology 2, 217–223 (2005).

R. J. Parkes, G. Webster, B. A. Cragg, A. J. Weightman, C. J. Newberry, T. G. Ferdelman, J. Kallmeyer, B. B. Jørgensen, I. W. Aiello, J. C. Fry Nature 436, 390–394 (2005).

A. Schippers, L. N. Neretin, J. Kallmeyer, T. G. Ferdelman, B. A. Cragg, R. J. Parkes, B. B. Jørgensen Nature 433, 861–864 (2005).

F. Inagaki, H. Okada, A. I. Tsapin, K. H. Nealson Astrobiology 5, 141–153 (2005).

F. Inagaki, M. Suzuki, K. Takai, H. Oida, T. Sakamoto, K. Aoki, K. H. Nealson, K. Horikoshi Appl. Environ. Microbiol 69, 7224–7235 (2003).

M. J. L. Coolen, H. Cypionka, H. Sass, J. Overmann Science 296, 2407–2410 (2002).

V. J. Orphan, K.-U. Hinrichs, W. Ussler, C. K. Paull, L. T. Taylor, S. P. Sylva, J. M. Hayes, E. F. Delong Appl. Environ. Microbiol 67, 1922–1934 (2001).

H. F. Sturt, R. E. Summons, K. Smith, M. Elvert, K.-U. Hinrichs Rapid Commun. Mass Spectrom 18, 617–628 (2004).

J. S. Sinninghe Damsté, S. Schouten, E. C. Hopmans, A. C. T. Van Duin, J. A. J. Geenevasen J. Lipid Res 43, 1641–1651 (2002).

R. I. Amann, B. Zarda, D. A. Stahl, K. Schleifer Appl. Environ. Microbiol 58, 3007–3011 (1992).

J. M. Hayes Rev. Mineral. Geochem 43, 1–31 (2001).

K.-U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, E. F. DeLong Nature 398, 802–805 (1999).

V. J. Orphan, C. H. House, K.-U. Hinrichs, K. D. McKeegan, E. F. DeLong Science 293, 484–487 (2001).

C. H. House, J. W. Schopf, K. O. Stetter Org. Geochem 34, 345–356 (2003).

R. E. Summons, P. D. Franzmann, P. D. Nichols Org. Geochem 28, 465–476 (1998).

L.-H. Lin, J. Hall, J. Lippmann-Pipke, J. A. Ward, B. Sherwood Lollar, M. DeFlaun, R. Rothmel, D. Moser, T. M. Gihring, B. Mislowack, et al. Geochem. Geophys. Geosyst 6, Q07003 (2005).

C. Blair, S. D’Hondt, A. J. Spivack Astrobiology 5, 250 (2005).

T. O. Stevens, J. P. McKinley Science 270, 450–454 (1995).

H. D. Schulz Marine Geochemistry, eds H. D. Schulz, M. Zabel (Springer, Berlin), pp. 85–128 (2000).

J. J. Middelburg Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

K. Zengler, H. H. Richnow, R. Rossello-Mora, W. Michaelis, F. Widdel Nature 401, 266–269 (1999).

L. Tijhuis, M. C. M. Van Loosdrecht, J. J. Heijnen Biotechnol. Bioeng 42, 509–519 (1993).

J. C. M. Scholten, R. Conrad Appl. Environ. Microbiol 66, 2934–2942 (2000).

P. A. del Giorgio, J. J. Cole Ann. Rev. Ecol. Syst 29, 503–541 (1998).

J. Harder FEMS Microbiol. Ecol 23, 39–44 (1997).

D. R. Boone, W. B. Whitman, Y. Koga Bergey’s Manual of Systematic Bacteriology, eds D. R. Boone, R. W. Castenholz (Springer, New York) Vol. 1, 246–267 (2001).

D. R. Boone, W. B. Whitman, Y. Koga Bergey’s Manual of Systematic Bacteriology, eds D. R. Boone, R. W. Castenholz (Springer, New York) Vol. 1, 268–294 (2001).

M. B. Karner, E. F. DeLong, D. M. Karl Nature 409, 507–510 (2001).

R. I. Amann, B. J. Binder, A. J. Olson, S. W. Chisholm, R. Devereux, D. A. Stahl Appl. Environ. Microbiol 56, 1919–1925 (1990).

D. A. Stahl, R. Amann Sequencing and Hybridization Techniques in Bacterial Systematics, eds E. Stackebrandt, M. Goodfellow (Wiley, Chichester, U.K.), pp. 205–248 (1991).

E. F. DeLong, L. L. King, R. Massana, H. Cittone, A. E. Murray, C. Schleper, S. G. Wakeham Appl. Environ. Microbiol 64, 1133–1138 (1998).

B. J. MacGregor, D. P. Moser, E. W. Alm, K. H. Nealson, D. A. Stahl Appl. Environ. Microbiol 63, 1178–1181 (1997).

D. A. Stahl, B. Flesher, H. R. Mansfield, L. Montgomery Appl. Environ. Microbiol 54, 1079–1084 (1988).

A. Teske, K.-U. Hinrichs, V. Edgcomb, A. de Vera Gomez, D. Kysela, S. P. Sylva, M. L. Sogin, H. W. Jannasch Appl. Environ. Microbiol 68, 1994–2007 (2002).

E. F. DeLong Proc. Natl. Acad. Sci. USA 89, 5685–5689 (1992).