Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov–Zhabotinsky reaction

Biosystems - Tập 112 - Trang 145-162 - 2013
Paolo Dini1,2, Chrystopher L. Nehaniv1, Attila Egri-Nagy1,3, Maria J. Schilstra1
1Royal Society Wolfson BioComputation Research Lab, Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
2Department of Media and Communications, London School of Economics and Political Science, London, United Kingdom
3School of Computing, Engineering and Mathematics, University of Western Sydney, NSW,Australia

Tài liệu tham khảo

1968 Baumann, 2000 Cameron, 2008 Chevalley, 1955, Sur certains groupes simples, Tohoku Math. J., 7, 14, 10.2748/tmj/1178245104 Cusumano, 1995, Chaotic non-planar vibrations of the thin elastica parts I & II, J. Sound Vib., 179, 185, 10.1006/jsvi.1995.0013 Dömösi, 2005 Dini, 2010, A Research Framework for Interaction Computing, 224 Dini, P., Briscoe, G., Van Leeuwen, I., Munro, A.J., Lain, S., 2009. D1.3: Biological Design Patterns of Autopoietic Behaviour in Digital Ecosystems. OPAALS Deliverable, European Commission. URL: http://files.opaals.eu/OPAALS/Year_3_Deliverables/WP01/. Dini, P., Schreckling, D., Horváth, G., 2010. Algebraic and categorical framework for interaction computing and symbiotic security. In: Altman, E., Dini, P., Miorandi, D., Schreckling, D. (Eds.), Paradigms for Biologically-Inspired Autonomic Networks and Services: The BIONETS Project eBook. URL: http://www.bionets.eu. Dini, 2012, Algebraic analysis of the computation in the Belousov–Zhabotinsky reaction, 216 Dini, 2012, Biological and mathematical basis of interaction computing, International Journal of Unconventional Computing, 8, 283 Egri-Nagy, 2008, Algebraic properties of automata associated to Petri nets and applications to computation in biological systems, BioSystems, 94, 135, 10.1016/j.biosystems.2008.05.019 Egri-Nagy, 2008, Hierarchical coordinate systems for understanding complexity and its evolution with applications to genetic regulatory networks, Artif. Life, 14, 299, 10.1162/artl.2008.14.3.14305 Egri-Nagy, A., Nehaniv, C.L., 2010. PN2A: Petri Net Analysis GAP Package. URL: http://sourceforge.net/projects/pn2a/. Egri-Nagy, 2008, Automatic analysis of computation in biochemical reactions, BioSystems, 94, 126, 10.1016/j.biosystems.2008.05.018 Egri-Nagy, 2010, Transformation Semigroups as Constructive Dynamical Spaces, 245 Egri-Nagy, 2011, Algorithms for the efficient calculation of the holonomy decomposition Egri-Nagy, A., Nehaniv, C.L., Mitchell, J.D., 2013. SgpDec – Software Package for Hierarchical Coordinatization of Groups and Semigroups, Implemented in the GAP Computer Algebra System, Version 0.6.67. http://sgpdec.sf.net. Eilenberg, 1976 Field, 1974, Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction, J. Chem. Phys., 60, 1877, 10.1063/1.1681288 Gillespie, 1976, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 403, 10.1016/0021-9991(76)90041-3 Gillespie, 1977, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340, 10.1021/j100540a008 Holcombe, 1982 Horváth, 2010, Lie group analysis of p53–mdm2 pathway, 285 Horváth, G., 2008. Functions and Polynomials over Finite Groups from the Computational Perspective. The University of Hertfordshire, Ph.D. Dissertation. Hydon, 2000 Kalman, 1969 Kauffman, 1993 Krohn, 1965, Algebraic theory of machines, I. Prime decomposition theorem for finite semigroups and machines, Trans. Am. Math. Soci., 116, 450, 10.1090/S0002-9947-1965-0188316-1 Krohn, 1966, Realizing complex boolean functions with simple groups, Inform. Control, 9, 190, 10.1016/S0019-9958(66)90229-4 Krohn, 1967, Algebraic principles for the analysis of a biochemical system, J. Comput. Syst. Sci., 1, 119, 10.1016/S0022-0000(67)80010-2 Lahav, 2004, Generation of oscillations by the p53–mdm2 feedback loop: a theoretical and experimental study, Nat. Genet., 36, 147, 10.1038/ng1293 Lev Bar-Or, 2000, Generation of oscillations by the p53–mdm2 feedback loop: a theoretical and experimental study, Proc. Natl. Acad. Sci. U.S.A., 94, 11250, 10.1073/pnas.210171597 Maler, O., 2010. On the Krohn-Rhodes Cascaded Decomposition Theorem. In Manna, Z. and Peled, D. (Eds.), Time for Verification: Essays in Memory of Amir Pnueli. Lecture Notes in Computer Science, 6200, Berlin: Springer. Monk, 2003, Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays, Current Biology, 13, 1409, 10.1016/S0960-9822(03)00494-9 Nehaniv, 2000, The evolution and understanding of hierarchical complexity in biology from an algebraic perspective, Artif. Life, 6, 45, 10.1162/106454600568311 Nehaniv, 1997, Algebraic models for understanding: coordinate systems and cognitive empowerment, 147 Nicolis, 1977 Noether, 1918, Invariante Variations probleme, Math.-Phys. Kl., 235 Noyes, 1972, Oscillations in chemical systems I. Detailed Mechanism in a system showing temporal oscillations, J. Am. Chem. Soc., 94, 1394, 10.1021/ja00759a080 Olver, 1993 Petri, C.A., 1962. Kommunikation mit Automaten. Schriften des IIM, 2. Rhodes, J., 2010. Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games. World Scientific Press. Foreword by Hirsch, M.W., Nehaniv, C.L. (Eds.) (Original version: University of California at Berkeley, Mathematics Library, 1969). Schilstra, 2009, Simple stochastic simulation, 381, 10.1016/S0076-6879(09)67015-4 Scott, 1994 Stephani, 1989 The GAP Group GAP – Groups, Algorithms, and Programming, Version 4.5.6, 2012. http://www.gap-system.org. Weinstein, 1996, Groupoids: unifying internal and external symmetry, Notices Am. Math. Soc., 43, 744 Zeiger, 1967, Cascade synthesis of finite-state machines, Inform. Control, 10, 419, 10.1016/S0019-9958(67)90228-8