Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov–Zhabotinsky reaction
Tài liệu tham khảo
1968
Baumann, 2000
Cameron, 2008
Chevalley, 1955, Sur certains groupes simples, Tohoku Math. J., 7, 14, 10.2748/tmj/1178245104
Cusumano, 1995, Chaotic non-planar vibrations of the thin elastica parts I & II, J. Sound Vib., 179, 185, 10.1006/jsvi.1995.0013
Dömösi, 2005
Dini, 2010, A Research Framework for Interaction Computing, 224
Dini, P., Briscoe, G., Van Leeuwen, I., Munro, A.J., Lain, S., 2009. D1.3: Biological Design Patterns of Autopoietic Behaviour in Digital Ecosystems. OPAALS Deliverable, European Commission. URL: http://files.opaals.eu/OPAALS/Year_3_Deliverables/WP01/.
Dini, P., Schreckling, D., Horváth, G., 2010. Algebraic and categorical framework for interaction computing and symbiotic security. In: Altman, E., Dini, P., Miorandi, D., Schreckling, D. (Eds.), Paradigms for Biologically-Inspired Autonomic Networks and Services: The BIONETS Project eBook. URL: http://www.bionets.eu.
Dini, 2012, Algebraic analysis of the computation in the Belousov–Zhabotinsky reaction, 216
Dini, 2012, Biological and mathematical basis of interaction computing, International Journal of Unconventional Computing, 8, 283
Egri-Nagy, 2008, Algebraic properties of automata associated to Petri nets and applications to computation in biological systems, BioSystems, 94, 135, 10.1016/j.biosystems.2008.05.019
Egri-Nagy, 2008, Hierarchical coordinate systems for understanding complexity and its evolution with applications to genetic regulatory networks, Artif. Life, 14, 299, 10.1162/artl.2008.14.3.14305
Egri-Nagy, A., Nehaniv, C.L., 2010. PN2A: Petri Net Analysis GAP Package. URL: http://sourceforge.net/projects/pn2a/.
Egri-Nagy, 2008, Automatic analysis of computation in biochemical reactions, BioSystems, 94, 126, 10.1016/j.biosystems.2008.05.018
Egri-Nagy, 2010, Transformation Semigroups as Constructive Dynamical Spaces, 245
Egri-Nagy, 2011, Algorithms for the efficient calculation of the holonomy decomposition
Egri-Nagy, A., Nehaniv, C.L., Mitchell, J.D., 2013. SgpDec – Software Package for Hierarchical Coordinatization of Groups and Semigroups, Implemented in the GAP Computer Algebra System, Version 0.6.67. http://sgpdec.sf.net.
Eilenberg, 1976
Field, 1974, Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction, J. Chem. Phys., 60, 1877, 10.1063/1.1681288
Gillespie, 1976, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 403, 10.1016/0021-9991(76)90041-3
Gillespie, 1977, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340, 10.1021/j100540a008
Holcombe, 1982
Horváth, 2010, Lie group analysis of p53–mdm2 pathway, 285
Horváth, G., 2008. Functions and Polynomials over Finite Groups from the Computational Perspective. The University of Hertfordshire, Ph.D. Dissertation.
Hydon, 2000
Kalman, 1969
Kauffman, 1993
Krohn, 1965, Algebraic theory of machines, I. Prime decomposition theorem for finite semigroups and machines, Trans. Am. Math. Soci., 116, 450, 10.1090/S0002-9947-1965-0188316-1
Krohn, 1966, Realizing complex boolean functions with simple groups, Inform. Control, 9, 190, 10.1016/S0019-9958(66)90229-4
Krohn, 1967, Algebraic principles for the analysis of a biochemical system, J. Comput. Syst. Sci., 1, 119, 10.1016/S0022-0000(67)80010-2
Lahav, 2004, Generation of oscillations by the p53–mdm2 feedback loop: a theoretical and experimental study, Nat. Genet., 36, 147, 10.1038/ng1293
Lev Bar-Or, 2000, Generation of oscillations by the p53–mdm2 feedback loop: a theoretical and experimental study, Proc. Natl. Acad. Sci. U.S.A., 94, 11250, 10.1073/pnas.210171597
Maler, O., 2010. On the Krohn-Rhodes Cascaded Decomposition Theorem. In Manna, Z. and Peled, D. (Eds.), Time for Verification: Essays in Memory of Amir Pnueli. Lecture Notes in Computer Science, 6200, Berlin: Springer.
Monk, 2003, Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays, Current Biology, 13, 1409, 10.1016/S0960-9822(03)00494-9
Nehaniv, 2000, The evolution and understanding of hierarchical complexity in biology from an algebraic perspective, Artif. Life, 6, 45, 10.1162/106454600568311
Nehaniv, 1997, Algebraic models for understanding: coordinate systems and cognitive empowerment, 147
Nicolis, 1977
Noether, 1918, Invariante Variations probleme, Math.-Phys. Kl., 235
Noyes, 1972, Oscillations in chemical systems I. Detailed Mechanism in a system showing temporal oscillations, J. Am. Chem. Soc., 94, 1394, 10.1021/ja00759a080
Olver, 1993
Petri, C.A., 1962. Kommunikation mit Automaten. Schriften des IIM, 2.
Rhodes, J., 2010. Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games. World Scientific Press. Foreword by Hirsch, M.W., Nehaniv, C.L. (Eds.) (Original version: University of California at Berkeley, Mathematics Library, 1969).
Schilstra, 2009, Simple stochastic simulation, 381, 10.1016/S0076-6879(09)67015-4
Scott, 1994
Stephani, 1989
The GAP Group GAP – Groups, Algorithms, and Programming, Version 4.5.6, 2012. http://www.gap-system.org.
Weinstein, 1996, Groupoids: unifying internal and external symmetry, Notices Am. Math. Soc., 43, 744
Zeiger, 1967, Cascade synthesis of finite-state machines, Inform. Control, 10, 419, 10.1016/S0019-9958(67)90228-8