Periodic oscillations of dark solitons in nonlinear optics

Optik - Tập 165 - Trang 341-344 - 2018
Weitian Yu1, Mehmet Ekici2, Mohammad Mirzazadeh3, Qin Zhou4, Wenjun Liu1
1State Key Laboratory of Information Photonics and Optical Communications, and School of Science, P.O. Box 122, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Department of Mathematics, Faculty of Science and Arts, Bozok University, 66100 Yozgat, Turkey
3Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran
4School of Electronics and Information Engineering, Wuhan Donghu University, Wuhan 430212, China

Tài liệu tham khảo

Hasegawa, 1973, Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber, Appl. Phys. Lett., 23, 171, 10.1063/1.1654847 Mollenauer, 1980, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., 45, 1095, 10.1103/PhysRevLett.45.1095 Emplit, 1987, Picosecond steps and dark pulses through nonlinear single mode fibers, Opt. Commun., 62, 374, 10.1016/0030-4018(87)90003-4 Agrawal, 2007 Biswas, 2017, Conservation laws for cubic–quartic optical solitons in Kerr and power law media, Optik, 145, 650, 10.1016/j.ijleo.2017.08.047 Biswas, 2017, Resonant optical solitons with quadratic–cubic nonlinearity by semi-inverse variational principle, Optik, 145, 18, 10.1016/j.ijleo.2017.07.028 Biswas, 2017, Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations, Optik, 145, 14, 10.1016/j.ijleo.2017.07.036 Biswas, 2017, Cubic–quartic optical solitons in Kerr and power law media, Optik, 144, 357, 10.1016/j.ijleo.2017.07.008 Biswas, 2017, Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle, Optik, 143, 131, 10.1016/j.ijleo.2017.06.087 Biswas, 2017, Perturbation theory and optical soliton cooling with anti-cubic nonlinearity, Optik, 142, 73, 10.1016/j.ijleo.2017.05.060 Liu, 2017, Bidirectional all-optical switches based on highly nonlinear optical fibers, EPL, 118, 34004, 10.1209/0295-5075/118/34004 Liu, 2017, Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers, Nonlinear Dyn., 89, 2933, 10.1007/s11071-017-3636-5 Liu, 2017, Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation, Phys. Rev. E, 96, 042201, 10.1103/PhysRevE.96.042201 Liu, 2018, Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration, Nanotechnology, 29, 174002, 10.1088/1361-6528/aaae40 Liu, 2018, Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser, IEEE J. Sel. Top. Quantum Electron., 24, 0901005, 10.1109/JSTQE.2017.2759266 Liu, 2018, Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber, Opt. Commun., 406, 72, 10.1016/j.optcom.2017.04.021 Li, 2018, Soliton structures in the (1 + 1)-dimensional Ginzburg–Landau equation with a parity-time-symmetric potential in ultrafast optics, Chin. Phys. B, 27, 030504, 10.1088/1674-1056/27/3/030504 Agrawal, 2006 Zhao, 1989, Propagation properties of dark solitons, Opt. Lett., 14, 703, 10.1364/OL.14.000703 Hamaide, 1991, Dark-soliton jitter in amplified optical transmission systems, Opt. Lett., 16, 1578, 10.1364/OL.16.001578 Zhao, 1992, Generation, propagation, and amplification of dark solitons, J. Opt. Soc. Am. B, 9, 1134, 10.1364/JOSAB.9.001134 Uzunov, 1993, Self-frequency shift of dark solitons in optical fibers, Phys. Rev. A, 47, 1582, 10.1103/PhysRevA.47.1582 Swartzlander, 1992, Dark-soliton prototype devices: analysis by using direct scattering theory, Opt. Lett., 17, 493, 10.1364/OL.17.000493 Davies, 1992, Waveguides and Y junctions formed in bulk media by using dark spatial solitons, Opt. Lett., 17, 496, 10.1364/OL.17.000496 Walker, 2017, Dark solitons in high velocity waveguide polariton fluids, Phys. Rev. Lett., 119, 097403, 10.1103/PhysRevLett.119.097403 Liu, 2016, Dark soliton control in inhomogeneous optical fibers, Appl. Math. Lett., 61, 80, 10.1016/j.aml.2016.05.008 Liu, 2016, Dark solitons in WS2 erbium-doped fiber lasers, Photon. Res., 4, 111, 10.1364/PRJ.4.000111 Liu, 2015, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Opt. Express, 23, 26023, 10.1364/OE.23.026023 Gadzhimuradov, 2017, Vector dark solitons with oscillating background density, Nonlinear Dyn., 89, 2695, 10.1007/s11071-017-3618-7 Zhang, 2017, Periodic solitons and their interactions for a general coupled nonlinear Schrödinger system, Superlattice Microstruct., 105, 198, 10.1016/j.spmi.2017.03.026 Musammil, 2017, Ultrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficient, Opt. Fiber Technol., 37, 11, 10.1016/j.yofte.2017.06.006 Musammil, 2017, Dynamics of vector dark solitons propagation and tunneling effect in the variable coefficient coupled nonlinear Schrödinger equation, Chaos, 27, 023113, 10.1063/1.4976514 Hoeferl, 2016, Onset of transverse instabilities of confined dark solitons, Phys. Rev. A, 94, 013609, 10.1103/PhysRevA.94.013609 Seadawy, 2017, Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions, J. Electromagn. Wave, 31, 1353, 10.1080/09205071.2017.1348262 Seadawy, 2017, Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability, Results Phys., 7, 43, 10.1016/j.rinp.2016.11.038