Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles

Springer Science and Business Media LLC - Tập 22 Số 24 - Trang 19990-19999 - 2015
Lea Ulm1, Adela Krivohlavek1, Darija Domazet Jurašin2, Marija Ljubojević3, Goran Šinko3, Tea Crnković4, Irena Žuntar4, Sandra Šikić1, Ivana Vinković Vrček3
1Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10 000, Zagreb, Croatia
2Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia
3Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia
4Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10 000 Zagreb, Croatia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750

Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14

Barata C, Varo I, Navarro JC, Arun S, Porte C (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol C Toxicol Pharmacol 140:175–186

Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

Beauvais SL, Jones SB, Parris JT, Brewer SK, Little EE (2001) Cholinergic and behavioural neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 49:84–90

Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen O-P, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res 20:3456–3463

Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

Chen J, Rogers SC, Kavdia M (2013) Analysis of kinetics of dihydroethidium fluorescence with superoxide using xanthine oxidase and hypoxanthine assay. Ann Biomed Eng 41:327–337

Choi O, Clevenger TE, Deng B, Surampalli RYL, Ross J, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886

Dalai S, Pakrashi S, Chandrasekaran N, Mukherjee A (2013) Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS ONE 8:e62970

Devi M, Fingerman M (1995) Inhibition of acetylcholinesterase activity in the central nervous system of red swamp cray fish, Procambarus clarkia by mercury, cadmium and lead. Bull Environ Contam Toxicol 55:746–750

Diamantino TC, Guilhermino L, Almeida E, Soares AMVM (2000) Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests. Ecotoxicol Environ Saf 45:253–259

Dominguez GA, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Orr G, Klaper RD (2015) Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquat Toxicol 162:1–9

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

European Parliament and European Council, Directive 2006/121/EC. 2006. Off J Eur Union 561(L396):850.

Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behavior and effects in the aquatic environment. Environ Int 37:517–531

Fan WH, Wang XL, Cui M, Zhang D, Zhang Y, Yu T, Guo L (2012) Differential oxidative stress of octahedral and cubic Cu2O micro/nanocrystals to Daphnia magna. Environ Sci Technol 46:10255–10262

Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235

Gallegos MEH, Zannatha MMI, Osornio EG, Sanches AS, Rio FAP (2001) Immediate and delayed effects of lead on AChE, GSH-T and thiols in the substantia nigra, neostriatum and cortex of the rat brain. J App Toxicol 21:397–401

Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

Harris CA, Scott AP, Johnson AC, Panter GH, Sheahan D, Roberts M, Sumpter JP (2014) Principles of sound ecotoxicology. Environ Sci Technol 48:3100–3111

Hoheisel SM, Diamond S, Mount D (2012) Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ Toxicol Chem 31:2557–2563

Jemec A, Tišler T, Drobne D, Sepčić K, Jamnik P, Roš M (2008) Biochemical biomarkers in chronically metal-stressed daphnids. Comp Biochem Physiol Part C 147:61–68

Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

Kahru A, Dubourguier HC, Blinova I, Ivask I, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412

Klimisch H-J, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5

Li H, Xia H, Wang D, Tao X (2013) Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water. Langmuir 29:5074–5079

Marklund SL, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

Mehlen P, Kretz-Remy C, Préville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. EMBO J 15:2695–2706

Mwaanga P, Carraway ER, van den Hurk P (2014) The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquat Toxicol 150:201–209

Najimi S, Bouhaimi A, Daubèze M, Zekhnini A, Pellerin J, Narbone JF, Moukrim A (1997) Use of acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir Marine Bay (South of Morocco). Bull Environ Contamin Toxicol 58:901–908

OECD Guidelines for the testing of chemicals (2004) Section 2: Effects on Biotic Systems. Test No. 202: Daphnia sp. Acute immobilisation test. Organisation for Economic Co-operation and Development, Paris, France

OECD Guidelines for the testing of chemicals (2011) Section 2: Effects on Biotic Systems. Test No. 201: Freshwater Alga and Cyanobacteria, growth inhibition test. Organisation for Economic Co-operation and Development, Paris, France

Pakrashi S, Dalai S, Humayun A, Chakravarty S, Chandrasekaran N, Mukherjee A (2013) Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment. PLoS ONE 8:e74003

Romani R, Antognelli C, Baldracchini F, De Santis A, Isani G, Giovannini E, Rosi G (2003) Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem-Bio Inter 145:321–329

Römer I, Gavin AJ, White TA, Merrifield RC, Chipman JK, Viant MR, Lead JR (2013) The critical importance of defined media conditions in Daphnia magna nanotoxicity studies. Toxicol Lett 223:103–108

Šinko G, Vinković Vrček I, Goessler W, Leitinger G, Dijanošić A, Miljanić S (2013) Alteration of cholinesterase activity as possible mechanism of silver nanoparticle toxicity. Environ Sci Pollut Res 21:1391–1400

Stensberg MC, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A, Mclamore ES, Rickus J, Porterfield DM, Sepúlveda MS (2014) Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 8:833–842

Strużyński W, Dąbrowska-Bouta B, Grygorowicz T, Ziemińska E, Strużyńska L (2014) Markers of oxidative stress in hepatopancreas of crayfish (Orconectes limosus, raf) experimentally exposed to nanosilver. Environ Toxicol 29:1283–1291

Suresh A, Sivaramakrishna B, Victoriamma PC, Radhakrishnaiah K (1992) Comparative study on the inhibition of acetylcholinesterase activity in the freshwater fish Cyprinus carpio by mercury and zinc. Biochem Int 26:367–375

Toumi H, Boumaiza M, Millet M, Radetski CM, Felten V, Ferard JF (2015) Is acetylcholinesterase a biomarker of susceptibility in Daphnia magna (Crustacea, Cladocera) after deltamethrin exposure? Chemosphere 120:351–356

Zatta P, Ibn-Lkhayat-Idrissi M, Zambenedetti P, Kilyen M, Kiss T (2002) In vivo and in vitro effects of aluminium on the activity of mouse brain acetylcholinesterase. Brain Res Bull 59:41–45

Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892

Zou X, Shi J, Zhang H (2014) Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Aquat Toxicol 154:168–175