HMV: A medical decision support framework using multi-layer classifiers for disease prediction
Tài liệu tham khảo
2015
Chen, 2015, OrderRex: clinical order decision support and outcome predictions by data-mining electronic medical records, J. Am. Med. Inform. Assoc.
Dua, 2011
Ahmad, 2015, Random ordinality ensembles: ensemble methods for multi-valued categorical data, Inf. Sci., 296, 75, 10.1016/j.ins.2014.10.064
Sluban, 2015, Relating ensemble diversity and performance: a study in class noise detection, Neurocomputing, 160, 120, 10.1016/j.neucom.2014.10.086
Moretti, 2015, Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling, Neurocomputing, 10.1016/j.neucom.2014.08.100
Kim, 2015, Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction, Expert Syst. Appl., 42, 1074, 10.1016/j.eswa.2014.08.025
Kang, 2015, Multi-class classification via heterogeneous ensemble of one-class classifiers, Eng. Appl. Artif. Intell., 43, 35, 10.1016/j.engappai.2015.04.003
Pattekari, 2012, Prediction system for heart disease using Naïve Bayes, Int. J. Adv. Comput. Math. Sci., 3, 290
Ghumbre, 2011, Heart disease diagnosis using support vector machine
Prashanth, 2014, Automatic classification and prediction models for early Parkinson's disease diagnosis from SPECT imaging, Expert Syst. Appl., 41, 3333, 10.1016/j.eswa.2013.11.031
Übeyli, 2007, Implementing automated diagnostic systems for breast cancer detection, Expert Syst. Appl., 33, 1054, 10.1016/j.eswa.2006.08.005
Ba-Alw, 2013, Comparative study for analysis the prognostic in hepatitis data: data mining approach, Int. J. Sci. Eng. Res., 4, 680
Zolfaghari, 2012, Diagnosis of diabetes in female population of PIMA Indian heritage with ensemble of BP neural network and SVM, IJCEM, 15
Sapna, 2008, Data mining-fuzzy neural genetic algorithm in predicting diabetes, Res. J. Comput. Eng.
Temurtas, 2009, A comparative study on thyroid disease diagnosis using neural networks, Expert Syst. Appl., 36, 944, 10.1016/j.eswa.2007.10.010
Li, 2011, A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets, Artif. Intell. Med., 52, 45, 10.1016/j.artmed.2011.02.001
Lin, 2008, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Syst. Appl., 35, 1817, 10.1016/j.eswa.2007.08.088
2006, An introduction to feature extraction, 1
2006, Combining SVMs with various feature selection strategies, 315
Wilson, 1997, Improved heterogeneous distance functions, J. Artif. Intell. Res., 1, 10.1613/jair.346
García-Laencina, 2009, K nearest neighbours with mutual information for simultaneous classification and missing data imputation, Neurocomputing, 72, 1483, 10.1016/j.neucom.2008.11.026
CHROMIŃSKI, 2010, Comparison of outlier detection methods in biomedical data, J. Med. Inform. Technol., 16, 89
Mardia, 1979
Díez-Pastor, 2015, Random balance: ensembles of variable priors classifiers for imbalanced data, Knowl. Based Syst., 10.1016/j.knosys.2015.04.022
King, 2015, Ensemble learning methods for pay-per-click campaign management, Expert Syst. Appl., 42, 4818, 10.1016/j.eswa.2015.01.047
Rokach, 2010, Ensemble-based classifiers, Artif. Intell. Rev., 33, 1, 10.1007/s10462-009-9124-7
Parvin, 2015, Proposing a classifier ensemble framework based on classifier selection and decision tree, Eng. Appl. Artif. Intell., 37, 34, 10.1016/j.engappai.2014.08.005
Mendes-Moreira, 2015, Improving the accuracy of long-term travel time prediction using heterogeneous ensembles, Neurocomputing, 150, 428, 10.1016/j.neucom.2014.08.072
Whalen, 2013, A comparative analysis of ensemble classifiers: case studies in genomics, 807
Park, 2014, Efficient implementation of class-based decomposition schemes for Naïve Bayes, Mach. Learn., 96, 295, 10.1007/s10994-013-5430-z
Hino, 2014, Non-parametric entropy estimators based on simple linear regression, Comput. Stat. Data Anal., 89, 72, 10.1016/j.csda.2015.03.011
Bose, 2015, Generalized quadratic discriminant analysis, Pattern Recognit., 48, 2676, 10.1016/j.patcog.2015.02.016
Lin, 2013, Double-bootstrapping source data selection for instance-based transfer learning, Pattern Recognit. Lett., 34, 1279, 10.1016/j.patrec.2013.04.012
Datta, 2015, Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs, Neural Netw., 70, 39, 10.1016/j.neunet.2015.06.005
http://archive.ics.uci.edu/ml/datasets.html (accessed 25.09.2014).
https://www.lri.fr/∼antoine/Courses/Master-ISI/TD-TP/breast-cancer.arff (accessed 02.04.15).
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/diabetes.html (accessed 25.09.14).
Yang, 2015, Comparison of prediction models for coronary heart diseases in depression patients, Int. J. Multimed. Ubiquitous Eng., 10, 257, 10.14257/ijmue.2015.10.3.24
Somasundaram, 2015, Probabilistic classification for prediction of heart disease, Aust. J. Basic Appl. Sci., 9, 639
Kiruthika, 2014, An ill-identified classification to predict cardiac disease using data clustering, Int. J. Data Min. Tech. Appl., 03, 321
Shouman, 2013, Integrating clustering with different data mining techniques in the diagnosis of heart disease, J. Comput. Sci. Eng., 20
Bashir, 2015, BagMOOV: a novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting, Australas. Phys. Eng. Sci. Med., 1
Sørensen, 2015, Long non-coding RNA expression profiles predict metastasis in lymph node-negative breast cancer independently of traditional prognostic markers, Breast Cancer Res., 10.1186/s13058-015-0557-4
Zand, 2015, A comparitive survey on data mining techniques for breast cancer diagnosis and prediction, Indian J. Fundam. Appl. Life Sci., 5, 4330
Chaurasia, 2014, Data mining techniques: to predict and resolve breast cancer survivability, Int. J. Comput. Sci. Mob. Comput., 3, 10
Chaurasia, 2014, A novel approach for breast cancer detection using data mining techniques, Int. J. Innov. Res. Comput. Commun. Eng., 2
K. Aljahdali, 2013, Comparative prediction performance with support vector machine and random forest classification techniques, Int. J. Comput. Appl., 69
Kandhasamy, 2015, Performance analysis of classifier models to predict diabetes mellitus, Procedia Comput. Sci., 47, 10.1016/j.procs.2015.03.182
Bashir, 2015, An efficient rule based classification of diabetes using ID3, C4.5 and CART ensemble
Gandhi, 2014, Diabetes prediction using feature selection and classification, Int. J. Adv. Eng. Res. Dev.
Tapak, 2013, Real-data comparison of data mining methods in prediction of diabetes in Iran, Healthc. Inf. Res., 19, 177, 10.4258/hir.2013.19.3.177
Karthikeyani, 2012, Comparative of data mining classification algorithm (CDMCA) in diabetes disease prediction, Int. J. Comput. Appl., 60
Gulia, 2014, Liver patient classification using intelligent techniques, Int. J. Comput. Sci. Inf. Technol., 5, 5110
Jin, 2014, Decision factors on effective liver patient data prediction, Int. J. BioSci. BioTechnol., 6, 167
Sug, 2012, Improving the prediction accuracy of liver disorder disease with oversampling, Appl. Math. Electr. Comput. Eng., 331
Ramana, 2011, A critical study of selected classification algorithms for liver disease diagnosis, Int. J. Database Manag. Syst., 3
Karthik, 2011, Classification and rule extraction using rough set for diagnosis of liver disease and its types, Adv. Appl. Sci. Res., 2, 334
Houby, 2014, A framework for prediction of response to HCV therapy using different data mining techniques, Adv. Bioinform., 2014, 10.1155/2014/181056
Karthikeyan, 2013, Analysis of classification algorithms applied to hepatitis patients, Int. J. Comput. Appl., 62
Neshat, 2012, Hepatitis disease diagnosis using hybrid case based reasoning and particle swarm optimization, Artif. Intell.
Kumar, 2012, Hepatitis prediction model based on data mining algorithm and optimal feature selection to improve predictive accuracy, Int. J. Comput. Appl., 51, 13
Khan, 2008, Evaluation of diagnostic accuracy of APRI for prediction of fibros is in hepatitis C patients, J. Ayub. Med. Coll. Abbottabad
Willis, 2012, Predictors of survival in Parkinson disease, Arch. Neurol., 69, 601, 10.1001/archneurol.2011.2370
Hariganesh, 2014, A survey of Parkinson's disease using data mining algorithms, Int. J. Comput. Sci. Inf. Technol., 5, 4943
Yadav, 2011, Predication of Parkinson's disease using data mining methods: a comparative analysis of tree, statistical, and support vector machine classifiers, Indian J. Med. Sci., 64
Li, 2009, CoCoST: a computational cost efficient classifier, 268