The proteomic landscape of glioma stem-like cells

EuPA Open Proteomics - Tập 8 - Trang 85-93 - 2015
Cheryl F. Lichti1,2, Norelle C. Wildburger1,3, Alexander S. Shavkunov1, Ekaterina Mostovenko1, Huiling Liu1, Erik P. Sulman4, Carol L. Nilsson1,2
1Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0617, United States
2UTMB Cancer Center, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1074, United States
3Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1074, United States
4Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States

Tài liệu tham khảo

Kleihues, 2000, Pathology and genetics of tumours of the nervous system, 314 Louis, 2007, The 2007 WHO classification of tumours of the central nervous system, Acta Neuropathol., 114, 97, 10.1007/s00401-007-0243-4 Berens, 1999, “…those left behind. ” Biology and oncology of invasive glioma cells, Neoplasia, 1, 208, 10.1038/sj.neo.7900034 Giese, 2003, Cost of migration: invasion of malignant gliomas and implications for treatment, J. Clin. Oncol., 21, 1624, 10.1200/JCO.2003.05.063 Scherer, 1940, A critical review: the pathology of cerebral gliomas, J. Neurol. Psychiatry, 3, 147, 10.1136/jnnp.3.2.147 Stupp, 2005, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352, 987, 10.1056/NEJMoa043330 Bao, 2006, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 444, 756, 10.1038/nature05236 Facchino, 2010, BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery, J. Neurosci., 30, 10096, 10.1523/JNEUROSCI.1634-10.2010 Hadjipanayis, 2009, Tumor initiating cells in malignant gliomas: biology and implications for therapy, J. Mol. Med. (Berl.), 87, 363, 10.1007/s00109-009-0440-9 Kang, 2007, Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma, Stem Cells Dev., 16, 837, 10.1089/scd.2007.0006 Liu, 2006, Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma, Mol. Cancer, 5, 10.1186/1476-4598-5-67 Brennan, 2013, The somatic genomic landscape of glioblastoma, Cell, 155, 462, 10.1016/j.cell.2013.09.034 Cancer Genome Atlas Research, Network, 2008, Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, 455, 1061, 10.1038/nature07385 Huse, 2011, Molecular subclassification of diffuse gliomas: seeing order in the chaos, Glia, 59, 1190, 10.1002/glia.21165 Phillips, 2006, Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell, 9, 157, 10.1016/j.ccr.2006.02.019 Verhaak, 2010, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, 17, 98, 10.1016/j.ccr.2009.12.020 Gill, 2014, MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma, Proc. Natl. Acad. Sci. U. S. A., 111, 12550, 10.1073/pnas.1405839111 Butti, 2014, Neurogenic and non-neurogenic functions of endogenous neural stem cells, Front. Neurosci., 8, 92, 10.3389/fnins.2014.00092 Galli, 2004, Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma, Cancer Res, 64, 7011, 10.1158/0008-5472.CAN-04-1364 Hemmati, 2003, Cancerous stem cells can arise from pediatric brain tumors, Proc. Natl. Acad. Sci. U. S. A., 100, 15178, 10.1073/pnas.2036535100 Singh, 2003, Identification of a cancer stem cell in human brain tumors, Cancer Res., 63, 5821 Singh, 2004, Identification of human brain tumour initiating cells, Nature, 432, 396, 10.1038/nature03128 Zhu, 2009, Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis, Proc. Natl. Acad. Sci. U. S. A., 106, 2712, 10.1073/pnas.0813314106 Lindberg, 2009, Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma, Oncogene, 28, 2266, 10.1038/onc.2009.76 Friedmann-Morvinski, 2012, Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice, Science, 338, 1080, 10.1126/science.1226929 Dufour, 2009, Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation, Stem Cells, 27, 2373, 10.1002/stem.155 Bamford, 2004, The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website, Br. J. Cancer, 91, 355, 10.1038/sj.bjc.6601894 Forbes, 2015, COSMIC: exploring the world’s knowledge of somatic mutations in human cancer, Nucleic Acids Res., 43, D805, 10.1093/nar/gku1075 Forbes, 2008, The Catalogue of Somatic Mutations in Cancer (COSMIC), Am. J. Clin. Oncol. Forbes, 2011, COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer, Nucleic Acids Res., 39, D945, 10.1093/nar/gkq929 Forbes, 2010, COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer, Nucleic Acids Res., 38, D652, 10.1093/nar/gkp995 Huang, 2009, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44, 10.1038/nprot.2008.211 Huang, 2007, DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists, Nucleic Acids Res., 35, W169, 10.1093/nar/gkm415 Lichti, 2014, Integrated chromosome 1transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines, J. Proteome Res., 13, 191, 10.1021/pr400786s Jiang, 2007, Examination of the therapeutic potential of Delta-2RGD in brain tumor stem cells: role of autophagic cell death, J. Natl. Cancer Inst., 99, 1410, 10.1093/jnci/djm102 Oberg, 2009, Statistical design of quantitative mass spectrometry-based proteomic experiments, J. Proteome Res., 8, 2144, 10.1021/pr8010099 Cote, 2012, The PRoteomics IDEntification (PRIDE) Converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium, Mol. Cell. Proteomics, 11, 1682, 10.1074/mcp.O112.021543 Hermjakob, 2006, The Proteomics Identifications Database (PRIDE) and the ProteomExchange Consortium: making proteomics data accessible, Expert Rev. Proteomics, 3, 1, 10.1586/14789450.3.1.1 Ternent, 2014, How to submit MS proteomics data to ProteomeXchange via the PRIDE database, Proteomics, 14, 2233, 10.1002/pmic.201400120 Vizcaino, 2014, ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat. Biotechnol., 32, 223, 10.1038/nbt.2839 Han, 2005, SPIDER: software for protein identification from sequence tags with de novo sequencing error, J. Bioinform. Comput. Biol., 3, 697, 10.1142/S0219720005001247 Ma, 2003, PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry, Rapid Commun. Mass Spectrom., 17, 2337, 10.1002/rcm.1196 Zhang, 2012, PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification, Mol. Cell. Proteomics, 111, 10.1074/mcp.M111.010587 Keller, 2002, Analytical applications of single-molecule detection, Anal. Chem., 74, 316A, 10.1021/ac022035i Perrin, 2013, Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and inter-individual variation, PLoS One, 8, e64314, 10.1371/journal.pone.0064314 Karpievitch, 2009, A statistical framework for protein quantitation in bottom-up MS-based proteomics, Bioinformatics, 25, 2028, 10.1093/bioinformatics/btp362 Polpitiya, 2008, DAnTE: a statistical tool for quantitative analysis of -omics data, Bioinformatics, 24, 1556, 10.1093/bioinformatics/btn217 Benjamini, 1995, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Statist Soc. Ser. B (Methodol.), 57, 289 Romero, 2005, Computational prediction of human metabolic pathways from the complete human genome, Genome Biol., 6, R2, 10.1186/gb-2004-6-1-r2 Bhat, 2013, Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma, Cancer Cell, 24, 331, 10.1016/j.ccr.2013.08.001 Le Mercier, 2008, Evidence of galectin-1 involvement in glioma chemoresistance, Toxicol. Appl. Pharmacol., 229, 172, 10.1016/j.taap.2008.01.009 Leuraud, 2004, Distinct responses of xenografted gliomas to different alkylating agents are related to histology and genetic alterations, Cancer Res., 64, 4648, 10.1158/0008-5472.CAN-03-3429 Huang, 2007, Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma, Proc. Natl. Acad. Sci. U. S. A., 104, 12867, 10.1073/pnas.0705158104 Zheng, 2013, A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival, Genes Dev., 27, 1462, 10.1101/gad.213686.113 Alli Shaik, 2014, Functional mapping of the zebrafish early embryo proteome and transcriptome, J. Proteome Res., 13, 5536, 10.1021/pr5005136 Gunaratne, 2013, Extensive mass spectrometry-based analysis of the fission yeast proteome: the Schizosaccharomyces pombe PeptideAtlas, Mol. Cell. Proteomics, 12, 1741, 10.1074/mcp.M112.023754 Nagaraj, 2011, Deep proteome and transcriptome mapping of a human cancer cell line, Mol. Syst. Biol., 7, 548, 10.1038/msb.2011.81 Schrimpf, 2009, Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes, PLoS Biol., 7, e48, 10.1371/journal.pbio.1000048 Cappell, 2010, Symplekin specifies mitotic fidelity by supporting microtubule dynamics, Mol. Cell Biol., 30, 5135, 10.1128/MCB.00758-10 Buchert, 2010, Symplekin promotes tumorigenicity by up-regulating claudin-2 expression, Proc. Natl. Acad. Sci. U. S. A., 107, 2628, 10.1073/pnas.0903747107 Keon, 1996, Symplekin, a novel type of tight junction plaque protein, J. Cell Biol., 134, 1003, 10.1083/jcb.134.4.1003 Kolev, 2005, Symplekin and multiple other polyadenylation factors participate in 3’-end maturation of histone mRNAs, Genes Dev., 19, 2583, 10.1101/gad.1371105 Whitehurst, 2007, Synthetic lethal screen identification of chemosensitizer loci in cancer cells, Nature, 446, 815, 10.1038/nature05697 Ni, 2014, Biodegradable implants efficiently deliver combination of paclitaxel and temozolomide to glioma C6 cancer cells in vitro, Ann. Biomed. Eng., 42, 214, 10.1007/s10439-013-0903-6 Jeyapalan, 2014, Paclitaxel poliglumex, temozolomide, and radiation for newly diagnosed high-grade glioma: A Brown University Oncology Group Study, Am. J. Clin. Oncol., 37, 444, 10.1097/COC.0b013e31827de92b Trent, 1986, Evidence for rearrangement, amplification, and expression of c-myc in a human glioblastoma, Proc. Natl. Acad. Sci. U S A, 83, 470, 10.1073/pnas.83.2.470 Blin, 1987, Enhanced expression of four cellular oncogenes in a human glioblastoma cell line, Cancer Genet. Cytogenet., 25, 285, 10.1016/0165-4608(87)90189-0 Engelhard, 1989, Quantification of the c-myc oncoprotein in human glioblastoma cells and tumor tissue, J. Neurosurg., 71, 224, 10.3171/jns.1989.71.2.0224 Patt, 1993, Chromosomal changes and correspondingly altered proto-oncogene expression in human gliomas. Value of combined cytogenetic and molecular genetic analysis, Anticancer Res., 13, 113 Shindo, 1993, Stabilization of c-myc protein in human glioma cells, Acta Neuropathol., 86, 345, 10.1007/BF00369446 Hirvonen, 1994, Differential expression of myc, max and RB1 genes in human gliomas and glioma cell lines, Br. J. Cancer, 69, 16, 10.1038/bjc.1994.3 Bigner, 1987, Relationship between gene amplification and chromosomal deviations in malignant human gliomas, Cancer Genet. Cytogenet., 29, 165, 10.1016/0165-4608(87)90045-8 Stenger, 1991, N-myc oncogene amplification in a pediatric case of glioblastoma multiforme, Childs Nerv. Syst., 7, 410, 10.1007/BF00304209 Asai, 1994, Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells Implication of the tumor suppressor genes for gene therapy, J. Neurooncol., 19, 259, 10.1007/BF01053280 Appin, 2015, Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis, Adv. Anat. Pathol., 22, 50, 10.1097/PAP.0000000000000048 Rasheed, 1994, Alterations of the TP53 gene in human gliomas, Cancer Res., 54, 1324 van Meyel, 1994, p53 mutation, expression, and DNA ploidy in evolving gliomas: evidence for two pathways of progression, J. Natl. Cancer Inst., 86, 1011, 10.1093/jnci/86.13.1011 Yamasaki, 2007, The roles of synoviolin in crosstalk between endoplasmic reticulum stress-induced apoptosis and p53 pathway, Cell Cycle, 6, 1319, 10.4161/cc.6.11.4277 He, 2004, Presentation of galectin-1 by extracellular matrix triggers T cell death, J. Biol. Chem., 279, 4705, 10.1074/jbc.M311183200 Toussaint, 2012, Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion, Mol. Cancer, 11, 32, 10.1186/1476-4598-11-32 Verschuere, 2014, Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity, Int. J. Cancer, 134, 873, 10.1002/ijc.28426 Tang, 2012, High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer, Int. J. Cancer, 130, 2337, 10.1002/ijc.26290 Ma, 2012, DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression, J. Biol. Chem., 287, 5639, 10.1074/jbc.M111.291229 Lv, 2014, The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression, Cell Death Dis., 5, e1402, 10.1038/cddis.2014.367 Lv, 2015, MiR-193a-3p promotes the multi-chemoresistance of bladder cancer by targeting the HOXC9 gene, Cancer Lett., 357, 105, 10.1016/j.canlet.2014.11.002 Agrawal, 2014, Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing, BMC Genomics, 15, 686, 10.1186/1471-2164-15-686 Edmond, 2011, Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin, EMBO J., 30, 510, 10.1038/emboj.2010.333 Jang, 2009, Interaction of Akt-phosphorylated SRPK2 with 14-3-3 mediates cell cycle and cell death in neurons, J. Biol. Chem., 284, 24512, 10.1074/jbc.M109.026237