Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview
Tài liệu tham khảo
Serpone, 2012, On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s, Photochem. Photobiol. Sci., 11, 1121, 10.1039/c2pp25026h
Coronado, 2013, A historical introduction to photocatalysis, 1
Hagfeld, 1995, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95, 49, 10.1021/cr00033a003
Fujishima, 2008, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001
Fujishima, 2000, Titanium dioxide photocatalysis, J Photochem. Photobiol. C: Photochem. Rev., 1, 1, 10.1016/S1389-5567(00)00002-2
Linsebigler, 1995, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013
Schneider, 2014, Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892
Bahnemann, 2004, Photocatalytic water treatment: solar energy applications, Sol. Energy, 77, 445, 10.1016/j.solener.2004.03.031
Zhang, 2009, Photoelectrocatalytic materials for environmental applications, J. Mater. Chem., 19, 5089, 10.1039/b821991e
Pan, 2010, Porous photocatalysts for advanced water purifications, J. Mater. Chem., 20, 4512, 10.1039/b925523k
Cargnello, 2014, Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals, Chem. Rev., 114, 9319, 10.1021/cr500170p
Chen, 2013, Recent progress in the synthesis of spherical titania nanostructures and their applications, Adv. Funct. Mater., 23, 1356, 10.1002/adfm.201201880
Lou, 2008, Hollow micro-/nanostructures: synthesis and applications, Adv. Mater., 20, 3987, 10.1002/adma.200800854
Liu, 2014, Titanium dioxide crystals with tailored facets, Chem. Rev., 114, 9559, 10.1021/cr400621z
Lai, 2012, Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems, Energy Environ. Sci., 5, 5604, 10.1039/C1EE02426D
Zhu, 2012, Hierarchical TiO2 microspheres: synthesis, structural control and their applications in dye-sensitized solar cells, RSC Adv., 2, 11629, 10.1039/c2ra22043a
Pan, 2014, Hydrous TiO2 spheres: An excellent platform for the rational design of mesoporous anatase spheres for photoelectrochemical applications, Catal. Today, 230, 197, 10.1016/j.cattod.2013.08.007
Park, 2000, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J. Phys. Chem. B, 104, 8989, 10.1021/jp994365l
Scanlon, 2013, Band alignment of rutile and anatase TiO2, Nat. Mater., 12, 798, 10.1038/nmat3697
Jiang, 2018, Anatase and rutile in Evonik Aeroxide P25: Heterojunctioned or individual nanoparticles?, Catal. Today, 300, 12, 10.1016/j.cattod.2017.06.010
Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891, 10.1021/cr0500535
Zhang, 2000, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates, J. Phys. Chem. B, 104, 3481, 10.1021/jp000499j
Kandiel, 2010, Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts, Chem. Mater., 22, 2050, 10.1021/cm903472p
Monai, 2017, Brookite: Nothing new under the sun?, Catalysts, 7, 304, 10.3390/catal7100304
Ceballos-Chuc, 2018, Influence of brookite impurities on the raman spectrum of TiO2 anatase nanocrystals, J. Phys. Chem. C, 122, 19921, 10.1021/acs.jpcc.8b04987
Vequizo, 2017, Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: Comparison with anatase and rutile TiO2 powders, ACS Catal., 7, 2644, 10.1021/acscatal.7b00131
Tay, 2013, Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostructures, J. Phys. Chem. C, 117, 14973, 10.1021/jp4040979
Liu, 2012, Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry, ACS Catal., 2, 1817, 10.1021/cs300273q
Marchand, 1980, TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17, Mat. Res. Bull., 15, 1129, 10.1016/0025-5408(80)90076-8
Hu, 2015, Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage, Energy Environ. Sci., 8, 1480, 10.1039/C5EE00101C
Xu, 2012, From titanates to TiO2 nanostructures: Controllable synthesis, growth mechanism, and applications, Sci. China Chem., 55, 2334, 10.1007/s11426-012-4674-y
Breil, 1966, Di(cyclooctatetraene)titanium and tri(cyclooctatetraene)dititanium, Angew. Chem. Int. Ed., 5, 898, 10.1002/anie.196608982
Liu, 2011, Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries, Adv. Mater., 23, 3450, 10.1002/adma.201100599
Liu, 2012, Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries, Adv. Mater., 24, 3201, 10.1002/adma.201201036
Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004
Kohtani, 2017, Reactivity of trapped and accumulated electrons in titanium dioxide photocatalysis, Catalysts, 7, 303, 10.3390/catal7100303
Zhang, 2012, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review, J Photochem. Photobiol. C: Photochem. Rev., 13, 263, 10.1016/j.jphotochemrev.2012.07.002
Mohamed, 2012, The role of electron transfer in photocatalysis: Fact and fictions, Appl. Catal. B, 128, 91, 10.1016/j.apcatb.2012.05.045
Gong, 2011, In situ mechanistic investigation at the liquid/solid interface by attenuated total reflectance FTIR: ethanol photo-oxidation over pristine and platinized TiO2 (P25), ACS Catal., 1, 864, 10.1021/cs200063q
Pennington, 2018, Changes in polymorph composition in P25-TiO2 during pretreatment analyzed by differential diffuse reflectance spectral analysis, J. Phys. Chem. C, 122, 5093, 10.1021/acs.jpcc.7b10449
Shen, 2014, Transfer of photoinduced electrons in anatase–rutile TiO2 determined by time-resolved mid-infrared spectroscopy, J. Phys. Chem. C, 118, 12661, 10.1021/jp502912u
Bahnemann, 1984, Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide, J. Phys. Chem., 88, 709, 10.1021/j150648a018
Schneider, 2018, Strong transient absorption of trapped holes in anatase and rutile TiO2 at high laser intensities, J. Phys. Chem. C, 122, 13979, 10.1021/acs.jpcc.8b01109
Yamakata, 2003, Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy, J. Mol. Catal. A Chem., 199, 85, 10.1016/S1381-1169(03)00021-9
Pichat, 2014, Representative examples of infrared spectroscopy uses in semiconductor photocatalysis, Catal. Today, 224, 251, 10.1016/j.cattod.2013.11.036
Tamaki, 2007, Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition, PCCP, 9, 1453, 10.1039/B617552J
Katoh, 2010, Transient absorption spectra of nanocrystalline TiO2 films at high excitation density, Chem. Phys. Lett., 500, 309, 10.1016/j.cplett.2010.10.045
Kessler, 1981, Diffuse reflectance triplet–triplet absorption spectroscopy of aromatic hydrocarbons chemisorbed on γ-alumina, J. Chem. Soc., Faraday Trans., 77, 309, 10.1039/f19817700309
Wilkinson, 1987, The use of diffuse reflectance laser flash photolysis to study primary photoprocesses in anisotropic media, Tetrahedron, 43, 1197, 10.1016/S0040-4020(01)90243-1
Colombo, 1995, Femtosecond diffuse reflectance spectroscopy of TiO2 powders, J. Phys. Chem., 99, 11752, 10.1021/j100030a020
Colombo, 1996, Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles, J. Phys. Chem., 100, 18445, 10.1021/jp9610628
Kafizas, 2016, Where do photogenerated holes go in anatase:rutile TiO2? A transient absorption spectroscopy study of charge transfer and lifetime, J. Phys. Chem. A, 120, 715, 10.1021/acs.jpca.5b11567
Yamakata, 2015, Distinctive behavior of photogenerated electrons and holes in anatase and rutile TiO2 powders, J. Phys. Chem. C, 119, 24538, 10.1021/acs.jpcc.5b09236
Schneider, 2017, Laser-flash-photolysis-spectroscopy: a nondestructive method?, Faraday Discuss., 197, 505, 10.1039/C6FD00193A
Anpo, 1989, In situ photoluminescence of titania as a probe of photocatalytic reactions, J. Phys. Chem., 93, 7300, 10.1021/j100358a008
House, 2011, Characterizing the ultrafast charge carrier trapping dynamics in single ZnO rods using two-photon emission microscopy, J. Phys. Chem. C, 115, 10806, 10.1021/jp1118426
Pallotti, 2017, Photoluminescence mechanisms in anatase and rutile TiO2, J. Phys. Chem. C, 121, 9011, 10.1021/acs.jpcc.7b00321
Patil, 2000, Transient photoconductivity measurements of ultrasonic spray pyrolyzed tungsten oxide thin films, Mater. Res. Bull., 35, 865, 10.1016/S0025-5408(00)00276-2
Tachikawa, 2006, Photoinduced charge separation in titania nanotubes, J. Phys. Chem. B, 110, 14055, 10.1021/jp063800q
Tachikawa, 2004, Influence of metal ions on the charge recombination processes during TiO2 photocatalytic one-electron oxidation reactions, J. Phys. Chem. B, 108, 11054, 10.1021/jp0484128
Tachikawa, 2004, Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy, J. Phys. Chem. B, 108, 19299, 10.1021/jp0470593
Sieland, 2017, Fractal charge carrier kinetics in TiO2, J. Phys. Chem. C, 121, 24282, 10.1021/acs.jpcc.7b07087
Ma, 2018, Photoreduction of hydrogen cations on TiO2 and its impact on surface band bending and the charge carrier recombination rate: A photoluminescence study under high vacuum conditions, J. Phys. Chem. C, 122, 8288, 10.1021/acs.jpcc.7b12624
Mercado, 2012, Location of hole and electron traps on nanocrystalline anatase TiO2, J. Phys. Chem. C, 116, 10796, 10.1021/jp301680d
Shi, 2007, Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture, J. Phys. Chem. C, 111, 693, 10.1021/jp065744z
Abazović, 2006, Photoluminescence of anatase and rutile TiO2 particles, J. Phys. Chem. B, 110, 25366, 10.1021/jp064454f
Imanishi, 2007, Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: Dependence on solution ph, J. Am. Chem. Soc., 129, 11569, 10.1021/ja073206+
Nakamura, 2004, Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements, J. Am. Chem. Soc., 126, 1290, 10.1021/ja0388764
Stevanovic, 2012, Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure, J. Am. Chem. Soc., 134, 324, 10.1021/ja2072737
Stevanovic, 2012, Probe of NH3 and CO adsorption on the very outermost surface of a porous TiO2 adsorbent using photoluminescence spectroscopy, Langmuir, 28, 5652, 10.1021/la205032j
Polliotto, 2018, Electron magnetic resonance as a tool to monitor charge separation and reactivity in photocatalytic materials, Res. Chem. Intermed., 44, 3905, 10.1007/s11164-018-3467-0
Wang, 2011, Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review, Chem. Eng. J., 170, 353, 10.1016/j.cej.2010.12.002
Dohshi, 2005, Effect of γ-ray irradiation on the wettability of TiO2 single crystals, Top. Catal., 35, 327, 10.1007/s11244-005-3841-1
Berger, 2005, Light-induced charge separation in anatase TiO2 particles, J. Phys. Chem. B, 109, 6061, 10.1021/jp0404293
Dvoranová, 2014, Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study), Molecules, 19, 10.3390/molecules191117279
Livraghi, 2011, On the nature of reduced states intitanium dioxide as monitored by electron paramagnetic resonance. I: The anatase case, J. Phys. Chem. C, 115, 25413, 10.1021/jp209075m
Yoshihara, 2004, Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400−2500 nm) transient absorption spectroscopy, J. Phys. Chem. B, 108, 3817, 10.1021/jp031305d
Wang, 2010, Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition, PCCP, 12, 7083, 10.1039/b925277k
Howe, 1985, EPR observation of trapped electrons in colloidal titanium dioxide, J. Phys. Chem., 89, 4495, 10.1021/j100267a018
Howe, 1987, EPR study of hydrated anatase under UV irradiation, J. Phys. Chem., 91, 3906, 10.1021/j100298a035
Macdonald, 2010, In situ EPR studies of electron trapping in a nanocrystalline rutile, J. Photochem. Photobiol. A, 216, 238, 10.1016/j.jphotochem.2010.07.023
Macdonald, 2012, EPR studies of electron and hole trapping in titania photocatalysts, Catal. Today, 182, 39, 10.1016/j.cattod.2011.08.039
Micic, 1993, Trapped holes on titania colloids studied by electron paramagnetic resonance, J. Phys. Chem., 97, 7277, 10.1021/j100130a026
Baldini, 2018, Clocking the ultrafast electron cooling in anatase titanium dioxide nanoparticles, ACS Photonics, 5, 1241, 10.1021/acsphotonics.7b00945
Bahnemann, 1997, Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes, J. Phys. Chem. B, 101, 4265, 10.1021/jp9639915
Rothenberger, 1985, Charge carrier trapping and recombination dynamics in small semiconductor particles, J. Am. Chem. Soc., 107, 8054, 10.1021/ja00312a043
Serpone, 1995, Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor?, J. Phys. Chem., 99, 16646, 10.1021/j100045a026
Jung, 2005, Photoluminescence and photoactivity of titania particles prepared by the sol–gel technique: effect of calcination temperature, J. Photochem. Photobiol. A, 170, 247, 10.1016/j.jphotochem.2004.09.003
Yamakata, 2015, Behavior and energy state of photogenerated charge carriers in single-crystalline and polycrystalline powder SrTiO3 studied by time-resolved absorption spectroscopy in the visible to mid-infrared region, J. Phys. Chem. C, 119, 1880, 10.1021/jp510647b
Yamakata, 2015, Morphology-sensitive trapping states of photogenerated charge carriers on SrTiO3 particles studied by time-resolved visible to mid-IR absorption spectroscopy: The effects of molten salt flux treatments, J. Photochem. Photobiol. A, 313, 168, 10.1016/j.jphotochem.2015.05.016
Zhang, 1998, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 102, 10871, 10.1021/jp982948+
Bessekhouad, 2003, Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions, J. Photochem. Photobiol. A, 157, 47, 10.1016/S1010-6030(03)00077-7
Chae, 2003, Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films, Chem. Mater., 15, 3326, 10.1021/cm030171d
Du, 2009, Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size, J. Phys. Chem. C, 113, 6454, 10.1021/jp810576s
Sachs, 2016, Evaluation of surface state mediated charge recombination in anatase and rutile TiO2, J. Phys. Chem. Lett., 7, 3742, 10.1021/acs.jpclett.6b01501
Wang, 2015, Transient absorption spectroscopy of anatase and rutile: The impact of morphology and phase on photocatalytic activity, J. Phys. Chem. C, 119, 10439, 10.1021/acs.jpcc.5b01858
Cavaleri, 1995, Femtosecond study of the size-dependent charge carrier dynamics in ZnO nanocluster solutions, J. Chem. Phys., 103, 5378, 10.1063/1.470573
Skinner, 1995, Femtosecond investigation of electron trapping in semiconductor nanoclusters, J. Phys. Chem., 99, 7853, 10.1021/j100020a003
Zhang, 2010, Direct observation of surface-mediated electron−hole pair recombination in TiO2(110), J. Phys. Chem. C, 114, 3098, 10.1021/jp910404e
Bahnemann, 1984, Detection of the intermediates of colloidal TiO2-catalysed photoreactions, Faraday Discuss., 78, 151, 10.1039/dc9847800151
Micic, 1993, Photoinduced hole transfer from titanium dioxide to methanol molecules in aqueous solution studied by electron paramagnetic resonance, J. Phys. Chem., 97, 13284, 10.1021/j100152a036
Kumar, 2011, Review on modified TiO2photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115, 13211, 10.1021/jp204364a
Lian, 2017, Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces, 9, 16959, 10.1021/acsami.6b11494
Uddin, 2015, New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition, J. Phys. Chem. C, 119, 7006, 10.1021/jp512769u
Ribbens, 2011, Unraveling the photocatalytic activity of multiwalled hydrogen trititanate and mixed-phase anatase/trititanate nanotubes: A combined catalytic and EPR study, J. Phys. Chem. C, 115, 2302, 10.1021/jp112005m
Nolan, 2016, Design of novel visible light active photocatalyst materials: Surface modified TiO2, Adv. Mater., 28, 5425, 10.1002/adma.201504894
Maity, 2018, Study of the bulk charge carrier dynamics in anatase and rutile TiO2 single crystals by femtosecond time-resolved spectroscopy, J. Phys. Chem. C, 122, 8925, 10.1021/acs.jpcc.8b00256
Zhang, 2015, Waltzing with the versatile platform of graphene to synthesize composite photocatalysts, Chem. Rev., 115, 10307, 10.1021/acs.chemrev.5b00267
Lu, 2018, Photoredox catalysis over graphene aerogel-supported composites, J. Mater. Chem. A, 6, 4590, 10.1039/C8TA00728D
Knorr, 2008, Trap-state distributions and carrier transport in pure and mixed-phase TiO2: Influence of contacting solvent and interphasial electron transfer, J. Phys. Chem. C, 112, 12786, 10.1021/jp8039934
Cherepy, 1998, Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles, J. Phys. Chem. B, 102, 770, 10.1021/jp973149e
Friedmann, 2010, TiO2for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal. B, 99, 398, 10.1016/j.apcatb.2010.05.014
Fazio, 2018, Curved TiO2 nanoparticles in water: short (chemical) and long (physical) range interfacial effects, ACS Appl. Mater. Interfaces, 10, 29943, 10.1021/acsami.8b08172
Wu, 2017, Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis, Materials, 10, 566, 10.3390/ma10050566
Nosaka, 2017, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev., 117, 11302, 10.1021/acs.chemrev.7b00161
Nosaka, 2016, Understanding hydroxyl radical (OH) generation processes in photocatalysis, ACS Energy Lett., 1, 356, 10.1021/acsenergylett.6b00174
Litke, 2017, Role of adsorbed water on charge carrier dynamics in photoexcited TiO2, J. Phys. Chem. C, 121, 7514, 10.1021/acs.jpcc.7b00472
Shirai, 2018, Water-assisted hole trapping at the highly curved surface of nano-TiO2 photocatalyst, J. Am. Chem. Soc., 140, 1415, 10.1021/jacs.7b11061
Litke, 2017, Role of dissociatively adsorbed water on the formation of shallow trapped electrons in TiO2 photocatalysts, J. Phys. Chem. C, 121, 10153, 10.1021/acs.jpcc.7b01151
Tang, 2008, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry, J. Am. Chem. Soc., 130, 13885, 10.1021/ja8034637
Kafizas, 2017, Water oxidation kinetics of accumulated holes on the surface of a TiO2photoanode: A rate law analysis, ACS Catal., 7, 4896, 10.1021/acscatal.7b01150
Baumanis, 2011, Hematite photocatalysis: Dechlorination of 2,6-dichloroindophenol and oxidation of water, J. Phys. Chem. C, 115, 25442, 10.1021/jp210279r
Liu, 2017, Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy, J. Am. Chem. Soc., 139, 10020, 10.1021/jacs.7b04877
Panayotov, 2012, Photooxidation mechanism of methanol on rutile TiO2 nanoparticles, J. Phys. Chem. C, 116, 6623, 10.1021/jp209215c
Augugliaro, 2012, Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis, J Photochem. Photobiol. C, 13, 224, 10.1016/j.jphotochemrev.2012.04.003
de Melo, 2012, Development and evaluation of the efficiency of photocatalytic pavement blocks in the laboratory and after one year in the field, Constr. Build. Mater., 37, 310, 10.1016/j.conbuildmat.2012.07.073
Chen, 2011, NOx photocatalytic degradation on active concrete road surface — from experiment to real-scale application, J. Clean. Prod., 19, 1266, 10.1016/j.jclepro.2011.03.001
Shelimov, 2008, Enhancement effect of TiO2 dispersion over alumina on the photocatalytic removal of NOx admixtures from O2–N2 flow, J. Photochem. Photobiol. A, 195, 81, 10.1016/j.jphotochem.2007.09.009
Ballari, 2011, Experimental study of the NO and NO2 degradation by photocatalytically active concrete, Catal. Today, 161, 175, 10.1016/j.cattod.2010.09.028
Mills, 2016, Kinetics of the photocatalysed oxidation of NO in the ISO 22197 reactor, J. Photochem. Photobiol. A, 321, 137, 10.1016/j.jphotochem.2016.01.010
Mills, 2015, The nitric oxide ISO photocatalytic reactor system: measurement of NOx removal activity and capacity, J. Photochem. Photobiol. A, 305, 29, 10.1016/j.jphotochem.2015.03.002
Dillert, 2012, Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide® TiO2 P25, J. Hazard. Mater., 211–212, 240, 10.1016/j.jhazmat.2011.11.041
Wang, 2007, Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric, Chemosphere, 66, 185, 10.1016/j.chemosphere.2006.04.071
Yu, 2009, Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study, Appl. Catal. B, 92, 454, 10.1016/j.apcatb.2009.09.004
Wu, 2006, In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation, J. Catal., 237, 393, 10.1016/j.jcat.2005.11.023
Mitsionis, 2011, Hydroxyapatite/titanium dioxide nanocomposites for controlled photocatalytic NO oxidation, Appl. Catal. B, 106, 398, 10.1016/j.apcatb.2011.05.047
Engel, 2015, The influence of irradiance and humidity on the photocatalytic conversion of nitrogen(II) oxide, J. Adv. Oxid. Technol., 18, 195
Mothes, 2018, Bed flow photoreactor experiments to assess the photocatalytic nitrogen oxides abatement under simulated atmospheric conditions, Appl. Catal. B, 231, 161, 10.1016/j.apcatb.2018.03.010
Yu, 2010, Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinetic study, Appl. Catal. B, 99, 58, 10.1016/j.apcatb.2010.05.032
Folli, 2018, Improving the selectivity of photocatalytic NOx abatement through improved O2 reduction pathways using Ti0.909W0.091O2Nx semiconductor nanoparticles: from characterization to photocatalytic performance, ACS Catal., 8, 6927, 10.1021/acscatal.8b00521
Garcia-Canadas, 2004, Dynamic behaviour of viologen-activated nanostructured TiO2: Correlation between kinetics of charging and coloration, Electrochim. Acta, 49, 745, 10.1016/j.electacta.2003.09.028
Jheong, 2006, Electrochromic property of the viologen-anchored mesoporous TiO2 films, J. Electroceram., 17, 929, 10.1007/s10832-006-0463-3
Gerfin, 2007, Molecular and supramolecular surface modification of nanocrystalline TiO2 films: Charge-separating and charge-injecting devices, Prog. Inorg. Chem., 44, 345
Asahi, 1997, Direct measurement of picosecond interfacial electron transfer from photoexcited TiO2 powder to an adsorbed molecule in the opaque suspension, Chem. Phys. Lett., 275, 234, 10.1016/S0009-2614(97)00752-5
Duonghong, 1982, Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems, J. Am. Chem. Soc., 104, 2977, 10.1021/ja00375a006
Mohamed, 2012, TiO2 nanoparticles as electron pools: single- and multi-step electron transfer processes, J. Photochem. Photobiol. A, 245, 9, 10.1016/j.jphotochem.2012.06.022
Mohamed, 2011, Kinetic and mechanistic investigations of multielectron transfer reactions induced by stored electrons in TiO2 nanoparticles: A stopped flow study, J. Phys. Chem. A, 115, 2139, 10.1021/jp108958w
Mohamed, 2018, Exploiting stored TiO2 electrons for multi-electron reduction of an azo dye methyl orange in aqueous suspension, J. Saudi. Chem. Soc., 22, 322, 10.1016/j.jscs.2016.06.002
Mohamed, 2011, Growth and reactivity of silver nanoparticles on the surface of TiO2: a stopped-flow study, J. Phys. Chem. C, 115, 12163, 10.1021/jp2031576
Mohamed, 2012, Kinetic and mechanistic investigations of the light induced formation of gold nanoparticles on the surface of TiO2, Chem. Eur. J., 18, 4314, 10.1002/chem.201102799
Piwoński, 2016, Examination of ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings, Appl. Surf. Sci., 373, 38, 10.1016/j.apsusc.2016.01.131