Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl–l-alanine amidase as a potential antimicrobial to control the bacterium

Archiv für Mikrobiologie - Tập 195 Số 10-11 - Trang 675-681 - 2013
Glenn E. Tillman1,2, Mustafa Simmons1,2, Johnna K. Garrish2, Bruce S. Seal2
1Outbreak Section of the Eastern Laboratory, Food Safety and Inspection Service, Richard B. Russell Agricultural Research Center, USDA, Athens, USA
2Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adeola O, Cowieson AJ (2011) Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci 89:3189–3218

Camiade E, Peltier J, Bourgeois I, Couture-Tosi E, Courtin P, Antunes A, Chapot-Chartier MP, Dupuy B, Pons JL (2010) Characterization of Acp, a peptidoglycan hydrolase of Clostridium perfringens with N-acetylglucosaminidase activity that is implicated in cell separation and stress-induced autolysis. J Bacteriol 192:2373–2384

Cooper KK, Bueschel DM, Songer JG (2013) Presence of Clostridium perfringens in retail chicken livers. Anaerobe 21:67–68

Crowe J, Döbeli H, Gentz R, Hochuli E, Stüber D, Henco K (1994) 6xHis–Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol 31:371–387

Donovan DM, Dong S, Garrett W, Rousseau GM, Moineau S, Pritchard DG (2006) Peptidoglycan hydrolase fusions maintain their parental specificities. Appl Environ Microbiol 72:2988–2996

Grass JE, Gould LH, Mahon BE (2013) Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog Dis 10:131–136

Gyles CL (2008) Antimicrobial resistance in selected bacteria from poultry. Anim Health Res Rev 9:149–158

Hames BD (1990) One-dimensional polyacrylamide gel electrophoresis. In: Hames BD, Rickwood D (eds) Gel electrophoresis of proteins: a practical approach, 2nd edn. Oxford University Press, New York, pp 1–147

Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:494–500

Koluman A, Dikici A (2013) Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends. Crit Rev Microbiol 39:57–69

Kristensen T, Voss H, Schwager C, Stegemann J, Sproat B, Ansorge W (1998) T7 DNA polymerase in automated dideoxy sequencing. Nucleic Acids Res 16:3487–3496

Kumazawa T, Masayama A, Fukuoka S, Makino S, Yoshimura T, Moriyama R (2007) Mode of action of a germination-specific cortex-lytic enzyme, SleC, of Clostridium perfringens S40. Biosci Biotechnol Biochem 71:884–892

Lin YT, Labbe R (2003) Enterotoxigenicity and genetic relatedness of Clostridium perfringens isolates from retail foods in the United States. Appl Environ Microbiol 69:1642–1646

Masayama A, Hamasaki K, Urakami K, Shimamoto S, Kato S, Makino S, Yoshimura T, Moriyama M, Moriyama R (2006) Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells. Genes Genet Syst 81:227–234

Millet S, Maertens L (2011) The European ban on antibiotic growth promoters in animal feed: from challenges to opportunities. Vet J 187:143–144

Miyata S, Moriyama R, Miyahara N, Makino S (1995a) A gene (sleC) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization. Microbiology 141:2643–2650

Miyata S, Moriyama R, Sugimoto K, Makino S (1995b) Purification and partial characterization of a spore cortex-lytic enzyme of Clostridium perfringens S40 spores. Biosci Biotechnol Biochem 59:514–515

Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz MJ, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, Paulsen IT (2006) Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16:1031–1040

National Academy of Sciences (2006) Treating infectious diseases in a microbial world: report of two workshops on novel antimicrobial therapeutics. ISBN: 0-309-65490-4, ( http://www.nap.edu/catalog.php?record_id=11471 )

Niall HD (1973) Automated Edman degradation: the protein sequenator. Methods Enzymol 27:942–1010

Oakley BB, Talundzic E, Morales CA, Hiett KL, Siragusa GR, Volozhantsev NV, Seal BS (2011) Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential. BMC Genomics 12:282

Paredes CJ, Alsaker KV, Papoutsakis ET (2005) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978

Persoons D, Dewulf J, Smet A, Herman L, Heyndrickx M, Martel A, Catry B, Butaye P, Haesebrouck F (2010) Prevalence and persistence of antimicrobial resistance in broiler indicator bacteria. Microb Drug Resist 16:67–74

Prescott JF (2008) Antimicrobial use in food and companion animals. Anim Health Res Rev 9:127–133

Pritchard DG, Dong S, Baker JR, Engler JA (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150:2079–2087

Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203:173–179

Sawires YS, Songer JG (2006) Clostridium perfringens: insight into virulence evolution and population structure. Anaerobe 12:23–43

Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

Schmitz JE, Ossiprandi MC, Rumah KR, Fischetti VA (2011) Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens. Appl Microbiol Biotechnol 89:1783–1795

Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001

Simmons M, Donovan DM, Siragusa GR, Seal BS (2010) Recombinant expression of two bacteriophage proteins that lyse Clostridium perfringens and share identical sequences in the C-terminal cell wall binding domain of the molecules but are dissimilar in their N-terminal active domains. J Agric Food Chem 58:10330–10337

Simmons M, Morales CA, Oakley BB, Seal BS (2012) Recombinant expression of a putative amidase cloned from the genome of Listeria monocytogenes that lyses the bacterium and its monolayer in conjunction with a protease. Probiotics Antimicrob Proteins 4:1–10

Siragusa GR, Danyluk MD, Hiett KL, Wise MG, Craven SE (2006) Molecular subtyping of poultry-associated type A Clostridium perfringens isolates by repetitive-element PCR. J Clin Microbiol 44:1065–1073

Smedley JG 3rd, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA (2004) The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 152:183–204

Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J Mol Biol 189:113–130

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

Tang SS, Labbé RG (1987) Mode of action of Clostridium perfringens initiation protein (spore-lytic enzyme). Ann Inst Pasteur Microbiol 138:597–608

Uehara T, Bernhardt TG (2011) More than just lysins: peptidoglycan hydrolases tailor the cell wall. Curr Opin Microbiol 14:698–703

Vollmer W, Joris B, Charlier P, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

Wen Q, McClane BA (2004) Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl Environ Microbiol 70:2685–2691

Zimmer M, Vukov N, Scherer S, Loessner MJ (2002) The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317