Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems
Tài liệu tham khảo
Abdelraheem, 2016, Revealing the mechanism, pathways and kinetics of UV 254 nm/H2O2-based degradation of model active sunscreen ingredient PBSA, Chem. Eng. J., 288, 824, 10.1016/j.cej.2015.12.046
Arp, 2017, Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci. Process. Impacts, 19, 939, 10.1039/C7EM00158D
Bastian, 1994, Determination of aromatic sulfonic acids in industrial wastewater by ion-pair chromatography, Fresenius J. Anal. Chem., 348, 674, 10.1007/BF00325571
Bauer, 1999, Analysis of polar organic micropollutants in water with ion chromatography–electrospray mass spectrometry, J. Chromatogr. A, 837, 117, 10.1016/S0021-9673(99)00048-5
Berger, U., Ost, N., Sättler, D., Schliebner, I., Kühne, R., Schüürmann, G., Neumann, M., Reemtsma, T. 2018. UBA Texte 09/2018: assessment of persistence, mobility and toxicity (PMT) of 167 REACH registered substances. https://www.umweltbundesamt.de/publikationen/assessment-of-persistence-mobility-toxicity-pmt-of (25.08.21).
Bergers, 1994, The analysis of EDTA in water by HPLC, Water Res., 28, 639, 10.1016/0043-1354(94)90143-0
Chatel, 2017, Avoid the PCB mistakes: a more sustainable future for ionic liquids, J. Hazard. Mater., 324, 773, 10.1016/j.jhazmat.2016.11.060
Cvjetko Bubalo, 2014, A brief overview of the potential environmental hazards of ionic liquids, Ecotoxicol. Environ. Saf., 99, 1, 10.1016/j.ecoenv.2013.10.019
Danysz, 2021, Amantadine: reappraisal of the timeless diamond—target updates and novel therapeutic potentials, J. Neural Transm., 128, 127, 10.1007/s00702-021-02306-2
Dieter, 2014, Health related guide values for drinking-water since 1993 as guidance to assess presence of new analytes in drinking-water, J. Hyg. Environ. Health, 217, 117, 10.1016/j.ijheh.2013.05.001
ECHA, 2021a. Substance Infocard - 1-Cyanoguanidine. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.006.649 (30.03.21).
ECHA, 2021b. Substance Infocard - 1,4-Diazabicyclo (2,2,2) octane. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.005.455 (30.03.21).
ECHA, 2021c. Simple search for chemicals. https://echa.europa.eu/de/search-for-chemicals (08.12.20).
ECHA, 2021d. Substance Infocard - Sodium 3-nitrobenzensulfonate. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.004.417 (30.03.21).
ECHA, 2021e. Substance Infocard - 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-ethanol. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.052.830 (30.03.21).
EC, 1998. European Commission, Council Directive 98/83/EC of 3rd November 1998 on the Quality of Water Intended for Human Consumption. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31998L0083 (30.03.2021 ).
EC 2020a. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2020 establishing a framework for Community action on the field of water policy. Off. J. Eur. Union, L327/1-327/72.
Freire, 2010, Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids, J. Phys. Chem., 114, 3744, 10.1021/jp903292n
Gago-Ferrero, 2018, Suspect screening and regulatory databases: a powerful combination to identify emerging micropollutants, Environ. Sci. Technol., 52, 6881, 10.1021/acs.est.7b06598
Ghanem, 2007, Glyphosate and AMPA analysis in aewage sludge by LC-ESI-MS/MS after FMOC derivatization on strong anion-exchange resin as solid support, Anal. Chem., 79, 3794, 10.1021/ac062195k
Hanke, 2008, Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection, Anal. Bioanal. Chem., 391, 2265, 10.1007/s00216-008-2134-5
Höcker, 2020, Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry, Anal. Bioanal. Chem., 412, 4857, 10.1007/s00216-020-02525-8
Huang, 2021, The distribution of persistent, mobile and toxic (PMT) pharmaceuticals and personal care products monitored across Chinese water resources, J. Hazard. Mater. Lett., 2
IFA, 2021. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, GESTIS Stoffdatenbank. https://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index.jsp (08.12.20).
Inbaraj, 2002, Photophysical and photochemical studies of 2-phenylbenzimidazole and UVB sunscreen 2-phenylbenzimidazole-5-sulfonic acid, Photochem. Photobiol., 75, 107, 10.1562/0031-8655(2002)075<0107:PAPSOP>2.0.CO;2
Jamshidi, 2014, Synthesis and characterization of acrylamide-based anionic copolymer and investigation of solution properties, Adv. Mater. Sci. Eng., 2014, 10.1155/2014/728675
Jandera, 2018, Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review, J. Sep. Sci., 41, 145, 10.1002/jssc.201701010
Jordan, 2015, Biodegradation of ionic liquids–a critical review, Chem. Soc. Rev., 44, 8200, 10.1039/C5CS00444F
Kaboré, 2018, Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances, Sci. Total Environ., 616-617, 1089, 10.1016/j.scitotenv.2017.10.210
Kelly, 1999, Microbial metabolism of methanesulfonic acid, Arch. Microbiol., 172, 341, 10.1007/s002030050770
Kiefer, 2021, Identification of LC-HRMS nontarget signals in groundwater after source related prioritization, Water Res., 196, 10.1016/j.watres.2021.116994
Köke, 2018, Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices, Anal. Bioanal. Chem., 410, 2403, 10.1007/s00216-018-0921-1
Kölbener, 1994, 3-nitrobenzenesulfonic acid and 3-aminobenzesulfonic acid in a laboratory trickling filter: biodegradability with different activated sludges, Water Res., 28, 1855, 10.1016/0043-1354(94)90160-0
Kowalska, 2021, Ionic liquids as environmental hazards – crucial data in view of future PBT and PMT assessment, J. Hazard. Mater., 403, 10.1016/j.jhazmat.2020.123896
Lange, 1995, Trace-level determination of aromatic sulfonates in water by on-line ion-pair extraction/ion-pair chromatography and their behavior in the aquatic environment, J. High Resolut. Chromatogr., 18, 243, 10.1002/jhrc.1240180408
Liu, 2019, High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples, TrAC Trend Anal. Chem., 121, 10.1016/j.trac.2019.02.021
EC, 2020b. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - chemicals strategy for sustainability towards a toxic-free environment. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A667%3AFIN (13.02.2021).
H. Mao, 1996. Simplified preparation of LiPF6 based electolyte for non-aqueous batteries. US patent US5496661A, 1996.
F.D. Martin, 1976. Stabilization of polymer solutions. US patent US 3953341A, 1976.
Mechelke, 2019, Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples, Anal. Bioanal. Chem., 411, 2555, 10.1007/s00216-019-01696-3
Montes, 2017, Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography-high resolution mass spectrometry, Environ. Sci. Technol., 51, 6250, 10.1021/acs.est.6b05135
Montes, 2019, Determination of persistent and mobile organic contaminants (PMOCs) in water by mixed-mode liquid chromatography-tandem mass spectrometry, Anal. Chem., 91, 5176, 10.1021/acs.analchem.8b05792
Montes, 2020, Applicability of mixed-mode chromatography for the simultaneous analysis of C1-C18 perfluoroalkylated substances, Anal. Bioanal. Chem., 412, 4849, 10.1007/s00216-020-02434-w
Neumann, 2019
Neuwald, 2020, Are (fluorinated) ionic liquids relevant environmental contaminants? High-resolution mass spectrometric screening for per- and polyfluoroalkyl substances in environmental water samples led to the detection of a fluorinated ionic liquid, Anal. Bioanal. Chem., 412, 4881, 10.1007/s00216-020-02606-8
Nödler
Nováková, 2014, Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC, TrAC Trend Anal. Chem., 63, 55, 10.1016/j.trac.2014.08.004
Plakhotnyk, 2005, Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O, J. Fluor. Chem., 126, 27, 10.1016/j.jfluchem.2004.09.027
Plechkova, 2008, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 123, 10.1039/B006677J
Qiu, 2015, Analysis of trace dicyandiamide in stream water using solid phase extraction and liquid chromatography UV spectrometry, J. Environ. Sci., 35, 38, 10.1016/j.jes.2015.02.010
Reemtsma, 2016, Mind the gap: persistent and mobile crganic compounds - water contaminants that slip through, Environ. Sci. Technol., 50, 10308, 10.1021/acs.est.6b03338
Reemtsma, 2002, Removal of sulfur − organic polar micropollutants in a membrane bioreactor treating industrial wastewater, Environ. Sci. Technol., 36, 1102, 10.1021/es010185p
Ruttkies, 2016, MetFrag relaunched: incorporating strategies beyond in silico fragmentation, J. Cheminform, 8, 3, 10.1186/s13321-016-0115-9
Salamone, 1970, Quaternary ammonium polymers from 1,4-diaza[2.2.2]bicyclooctane, J. Polym. Sci. A1, 8, 3495, 10.1002/pol.1970.150081211
Schulze, 2020, A rapid method for quantification of persistent and mobile organic substances in water using supercritical fluid chromatography coupled to high-resolution mass spectrometry, Anal. Bioanal. Chem., 412, 4941, 10.1007/s00216-020-02722-5
Schulze, 2018, Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals, Sci. Total Environ., 625, 1122, 10.1016/j.scitotenv.2017.12.305
Schulze, 2019, Occurrence of emerging persistent and mobile organic contaminants in European water samples, Water Res., 153, 80, 10.1016/j.watres.2019.01.008
Schymanski, 2014, Identifying small molecules via high resolution mass spectrometry: communicating confidence, Environ. Sci. Technol., 48, 2097, 10.1021/es5002105
Shiflett, 2020
Song, 1997, Rapid determination of 1,4-dioxane in water by solid-phase extraction and gas chromatography-mass spectrometry, J. Chromatogr. A, 787, 283, 10.1016/S0021-9673(97)00661-4
Storm, 1999, Use of volatile amines as ion-pairing agents for the high-performance liquid chromatographic–tandem mass spectrometric determination of aromatic sulfonates in industrial wastewater, J. Chromatogr. A, 854, 175, 10.1016/S0021-9673(99)00525-7
USEPA, 2021. United States Environmental Protection Agency, CompTox Chemicals Dashboard https://comptox.epa.gov/dashboard (08.12.20).
OECD, 2021. Organisation for Economic Co-operation and Development, 2021 eChem portal - quick search. https://www.echemportal.org/echemportal (08.12.20).
UBA, 2020. Umweltbundesamt: Health-related Indicator Values (HRIV). https://www.umweltbundesamt.de/themen/wasser/trinkwasser/trinkwasserqualitaet/toxikologie-des-trinkwassers/gesundheitlicher-orientierungswert-gow (21.06.21).
UBA, 2021. Umweltbundesamt: Health-based Guide Values, Digital List and Rationales. In preparation.
Wang, 2018, Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park, Environ. Sci. Technol., 52, 11007, 10.1021/acs.est.8b03030
Xue, 2020, Simultaneous determination of 44 pharmaceutically active compounds in water samples using solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem., 412, 203, 10.1007/s00216-019-02229-8
Zahn, 2016, Halogenated methanesulfonic acids: a new class of organic micropollutants in the water cycle, Water Res., 101, 292, 10.1016/j.watres.2016.05.082
Zahn, 2019, Identification of potentially mobile and persistent transformation products of REACH-registered chemicals and their occurrence in surface waters, Water Res., 150, 86, 10.1016/j.watres.2018.11.042
Zahn, 2020, Analysis of mobile chemicals in the aquatic environment-current capabilities, limitations and future perspectives, Anal. Bioanal. Chem., 412, 4763, 10.1007/s00216-020-02520-z
Zhai, 2014, Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries, Electrochim. Acta, 133, 623, 10.1016/j.electacta.2014.04.076