Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems

Water Research - Tập 204 - Trang 117645 - 2021
Isabelle Neuwald1, Matthias Muschket2, Daniel Zahn1, Urs Berger2, Bettina Seiwert2, Till Meier2, Jochen Kuckelkorn3, Claudia Strobel3, Thomas P. Knepper1, Thorsten Reemtsma2,4
1Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany
2Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany
3Umweltbundesamt, Section Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Strasse 12, Bad Elster 08645, Germany
4University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, Leipzig 04103, Germany

Tài liệu tham khảo

Abdelraheem, 2016, Revealing the mechanism, pathways and kinetics of UV 254 nm/H2O2-based degradation of model active sunscreen ingredient PBSA, Chem. Eng. J., 288, 824, 10.1016/j.cej.2015.12.046 Arp, 2017, Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility, Environ. Sci. Process. Impacts, 19, 939, 10.1039/C7EM00158D Bastian, 1994, Determination of aromatic sulfonic acids in industrial wastewater by ion-pair chromatography, Fresenius J. Anal. Chem., 348, 674, 10.1007/BF00325571 Bauer, 1999, Analysis of polar organic micropollutants in water with ion chromatography–electrospray mass spectrometry, J. Chromatogr. A, 837, 117, 10.1016/S0021-9673(99)00048-5 Berger, U., Ost, N., Sättler, D., Schliebner, I., Kühne, R., Schüürmann, G., Neumann, M., Reemtsma, T. 2018. UBA Texte 09/2018: assessment of persistence, mobility and toxicity (PMT) of 167 REACH registered substances. https://www.umweltbundesamt.de/publikationen/assessment-of-persistence-mobility-toxicity-pmt-of (25.08.21). Bergers, 1994, The analysis of EDTA in water by HPLC, Water Res., 28, 639, 10.1016/0043-1354(94)90143-0 Chatel, 2017, Avoid the PCB mistakes: a more sustainable future for ionic liquids, J. Hazard. Mater., 324, 773, 10.1016/j.jhazmat.2016.11.060 Cvjetko Bubalo, 2014, A brief overview of the potential environmental hazards of ionic liquids, Ecotoxicol. Environ. Saf., 99, 1, 10.1016/j.ecoenv.2013.10.019 Danysz, 2021, Amantadine: reappraisal of the timeless diamond—target updates and novel therapeutic potentials, J. Neural Transm., 128, 127, 10.1007/s00702-021-02306-2 Dieter, 2014, Health related guide values for drinking-water since 1993 as guidance to assess presence of new analytes in drinking-water, J. Hyg. Environ. Health, 217, 117, 10.1016/j.ijheh.2013.05.001 ECHA, 2021a. Substance Infocard - 1-Cyanoguanidine. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.006.649 (30.03.21). ECHA, 2021b. Substance Infocard - 1,4-Diazabicyclo (2,2,2) octane. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.005.455 (30.03.21). ECHA, 2021c. Simple search for chemicals. https://echa.europa.eu/de/search-for-chemicals (08.12.20). ECHA, 2021d. Substance Infocard - Sodium 3-nitrobenzensulfonate. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.004.417 (30.03.21). ECHA, 2021e. Substance Infocard - 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-ethanol. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.052.830 (30.03.21). EC, 1998. European Commission, Council Directive 98/83/EC of 3rd November 1998 on the Quality of Water Intended for Human Consumption. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31998L0083 (30.03.2021 ). EC 2020a. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2020 establishing a framework for Community action on the field of water policy. Off. J. Eur. Union, L327/1-327/72. Freire, 2010, Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids, J. Phys. Chem., 114, 3744, 10.1021/jp903292n Gago-Ferrero, 2018, Suspect screening and regulatory databases: a powerful combination to identify emerging micropollutants, Environ. Sci. Technol., 52, 6881, 10.1021/acs.est.7b06598 Ghanem, 2007, Glyphosate and AMPA analysis in aewage sludge by LC-ESI-MS/MS after FMOC derivatization on strong anion-exchange resin as solid support, Anal. Chem., 79, 3794, 10.1021/ac062195k Hanke, 2008, Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection, Anal. Bioanal. Chem., 391, 2265, 10.1007/s00216-008-2134-5 Höcker, 2020, Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry, Anal. Bioanal. Chem., 412, 4857, 10.1007/s00216-020-02525-8 Huang, 2021, The distribution of persistent, mobile and toxic (PMT) pharmaceuticals and personal care products monitored across Chinese water resources, J. Hazard. Mater. Lett., 2 IFA, 2021. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, GESTIS Stoffdatenbank. https://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index.jsp (08.12.20). Inbaraj, 2002, Photophysical and photochemical studies of 2-phenylbenzimidazole and UVB sunscreen 2-phenylbenzimidazole-5-sulfonic acid, Photochem. Photobiol., 75, 107, 10.1562/0031-8655(2002)075<0107:PAPSOP>2.0.CO;2 Jamshidi, 2014, Synthesis and characterization of acrylamide-based anionic copolymer and investigation of solution properties, Adv. Mater. Sci. Eng., 2014, 10.1155/2014/728675 Jandera, 2018, Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review, J. Sep. Sci., 41, 145, 10.1002/jssc.201701010 Jordan, 2015, Biodegradation of ionic liquids–a critical review, Chem. Soc. Rev., 44, 8200, 10.1039/C5CS00444F Kaboré, 2018, Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances, Sci. Total Environ., 616-617, 1089, 10.1016/j.scitotenv.2017.10.210 Kelly, 1999, Microbial metabolism of methanesulfonic acid, Arch. Microbiol., 172, 341, 10.1007/s002030050770 Kiefer, 2021, Identification of LC-HRMS nontarget signals in groundwater after source related prioritization, Water Res., 196, 10.1016/j.watres.2021.116994 Köke, 2018, Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices, Anal. Bioanal. Chem., 410, 2403, 10.1007/s00216-018-0921-1 Kölbener, 1994, 3-nitrobenzenesulfonic acid and 3-aminobenzesulfonic acid in a laboratory trickling filter: biodegradability with different activated sludges, Water Res., 28, 1855, 10.1016/0043-1354(94)90160-0 Kowalska, 2021, Ionic liquids as environmental hazards – crucial data in view of future PBT and PMT assessment, J. Hazard. Mater., 403, 10.1016/j.jhazmat.2020.123896 Lange, 1995, Trace-level determination of aromatic sulfonates in water by on-line ion-pair extraction/ion-pair chromatography and their behavior in the aquatic environment, J. High Resolut. Chromatogr., 18, 243, 10.1002/jhrc.1240180408 Liu, 2019, High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples, TrAC Trend Anal. Chem., 121, 10.1016/j.trac.2019.02.021 EC, 2020b. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - chemicals strategy for sustainability towards a toxic-free environment. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A667%3AFIN (13.02.2021). H. Mao, 1996. Simplified preparation of LiPF6 based electolyte for non-aqueous batteries. US patent US5496661A, 1996. F.D. Martin, 1976. Stabilization of polymer solutions. US patent US 3953341A, 1976. Mechelke, 2019, Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples, Anal. Bioanal. Chem., 411, 2555, 10.1007/s00216-019-01696-3 Montes, 2017, Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography-high resolution mass spectrometry, Environ. Sci. Technol., 51, 6250, 10.1021/acs.est.6b05135 Montes, 2019, Determination of persistent and mobile organic contaminants (PMOCs) in water by mixed-mode liquid chromatography-tandem mass spectrometry, Anal. Chem., 91, 5176, 10.1021/acs.analchem.8b05792 Montes, 2020, Applicability of mixed-mode chromatography for the simultaneous analysis of C1-C18 perfluoroalkylated substances, Anal. Bioanal. Chem., 412, 4849, 10.1007/s00216-020-02434-w Neumann, 2019 Neuwald, 2020, Are (fluorinated) ionic liquids relevant environmental contaminants? High-resolution mass spectrometric screening for per- and polyfluoroalkyl substances in environmental water samples led to the detection of a fluorinated ionic liquid, Anal. Bioanal. Chem., 412, 4881, 10.1007/s00216-020-02606-8 Nödler Nováková, 2014, Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC, TrAC Trend Anal. Chem., 63, 55, 10.1016/j.trac.2014.08.004 Plakhotnyk, 2005, Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O, J. Fluor. Chem., 126, 27, 10.1016/j.jfluchem.2004.09.027 Plechkova, 2008, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 123, 10.1039/B006677J Qiu, 2015, Analysis of trace dicyandiamide in stream water using solid phase extraction and liquid chromatography UV spectrometry, J. Environ. Sci., 35, 38, 10.1016/j.jes.2015.02.010 Reemtsma, 2016, Mind the gap: persistent and mobile crganic compounds - water contaminants that slip through, Environ. Sci. Technol., 50, 10308, 10.1021/acs.est.6b03338 Reemtsma, 2002, Removal of sulfur − organic polar micropollutants in a membrane bioreactor treating industrial wastewater, Environ. Sci. Technol., 36, 1102, 10.1021/es010185p Ruttkies, 2016, MetFrag relaunched: incorporating strategies beyond in silico fragmentation, J. Cheminform, 8, 3, 10.1186/s13321-016-0115-9 Salamone, 1970, Quaternary ammonium polymers from 1,4-diaza[2.2.2]bicyclooctane, J. Polym. Sci. A1, 8, 3495, 10.1002/pol.1970.150081211 Schulze, 2020, A rapid method for quantification of persistent and mobile organic substances in water using supercritical fluid chromatography coupled to high-resolution mass spectrometry, Anal. Bioanal. Chem., 412, 4941, 10.1007/s00216-020-02722-5 Schulze, 2018, Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals, Sci. Total Environ., 625, 1122, 10.1016/j.scitotenv.2017.12.305 Schulze, 2019, Occurrence of emerging persistent and mobile organic contaminants in European water samples, Water Res., 153, 80, 10.1016/j.watres.2019.01.008 Schymanski, 2014, Identifying small molecules via high resolution mass spectrometry: communicating confidence, Environ. Sci. Technol., 48, 2097, 10.1021/es5002105 Shiflett, 2020 Song, 1997, Rapid determination of 1,4-dioxane in water by solid-phase extraction and gas chromatography-mass spectrometry, J. Chromatogr. A, 787, 283, 10.1016/S0021-9673(97)00661-4 Storm, 1999, Use of volatile amines as ion-pairing agents for the high-performance liquid chromatographic–tandem mass spectrometric determination of aromatic sulfonates in industrial wastewater, J. Chromatogr. A, 854, 175, 10.1016/S0021-9673(99)00525-7 USEPA, 2021. United States Environmental Protection Agency, CompTox Chemicals Dashboard https://comptox.epa.gov/dashboard (08.12.20). OECD, 2021. Organisation for Economic Co-operation and Development, 2021 eChem portal - quick search. https://www.echemportal.org/echemportal (08.12.20). UBA, 2020. Umweltbundesamt: Health-related Indicator Values (HRIV). https://www.umweltbundesamt.de/themen/wasser/trinkwasser/trinkwasserqualitaet/toxikologie-des-trinkwassers/gesundheitlicher-orientierungswert-gow (21.06.21). UBA, 2021. Umweltbundesamt: Health-based Guide Values, Digital List and Rationales. In preparation. Wang, 2018, Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park, Environ. Sci. Technol., 52, 11007, 10.1021/acs.est.8b03030 Xue, 2020, Simultaneous determination of 44 pharmaceutically active compounds in water samples using solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem., 412, 203, 10.1007/s00216-019-02229-8 Zahn, 2016, Halogenated methanesulfonic acids: a new class of organic micropollutants in the water cycle, Water Res., 101, 292, 10.1016/j.watres.2016.05.082 Zahn, 2019, Identification of potentially mobile and persistent transformation products of REACH-registered chemicals and their occurrence in surface waters, Water Res., 150, 86, 10.1016/j.watres.2018.11.042 Zahn, 2020, Analysis of mobile chemicals in the aquatic environment-current capabilities, limitations and future perspectives, Anal. Bioanal. Chem., 412, 4763, 10.1007/s00216-020-02520-z Zhai, 2014, Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries, Electrochim. Acta, 133, 623, 10.1016/j.electacta.2014.04.076