Epigenetics of malignant melanoma
Tài liệu tham khảo
Tas, 2012, Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors, J. Oncol., 2012, 1, 10.1155/2012/647684
Stewart, 2014, 495
Luke, 2017, Targeted agents and immunotherapies: optimizing outcomes in melanoma, Nat. Rev. Clin. Oncol., 17, 463, 10.1038/nrclinonc.2017.43
Caini, 2009, Meta-analysis of risk factors for cutaneous melanoma according to anatomical site and clinico-pathological variant, Eur. J. Cancer, 45, 3054, 10.1016/j.ejca.2009.05.009
Cichorek, 2013, Skin melanocytes: biology and development, Adv. Dermatol. Allergol., 1, 30, 10.5114/pdia.2013.33376
Lin, 2007, Melanocyte biology and skin pigmentation, Nature, 445, 843, 10.1038/nature05660
D’Mello, 2016, Signaling pathways in melanogenesis, Int. J. Mol. Sci., 17, 10.3390/ijms17071144
Bertolotto, 2013, Melanoma from melanocyte to genetic alterations and clinical options, Scientifica, 2013, 1, 10.1155/2013/635203
D’Orazio, 2006, Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning, Nature, 443, 340, 10.1038/nature05098
Cui, 2007, Central role of p53 in the suntan response and pathologic hyperpigmentation, Cell, 128, 853, 10.1016/j.cell.2006.12.045
Alexandrov, 2013, Signatures of mutational processes in human cancer, Nature, 500, 415, 10.1038/nature12477
Arozarena, 2017, Targeting invasive properties of melanoma cells, FEBS J., 284, 2148, 10.1111/febs.14040
Hodis, 2012, A landscape of driver mutations in melanoma, Cell, 150, 251, 10.1016/j.cell.2012.06.024
Berger, 2012, Melanoma genome sequencing reveals frequent PREX2 mutations, Nature, 485, 502, 10.1038/nature11071
Zhang, 2016, The genomic landscape of cutaneous melanoma, Pigment Cell Melanoma Res., 29, 266, 10.1111/pcmr.12459
Akbani, 2015, Genomic classification of cutaneous melanoma, Cell, 161, 1681, 10.1016/j.cell.2015.05.044
Chalmers, 2017, Analysis of 100, 000 human cancer genomes reveals the landscape of tumor mutational burden, Genome Med., 9, 10.1186/s13073-017-0424-2
Wellbrock, 2015, Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy, Pigment Cell Melanoma Res., 28, 390, 10.1111/pcmr.12370
Forbes, 2017, COSMIC: somatic cancer genetics at high-resolution, Nucleic Acids Res., 45, D777, 10.1093/nar/gkw1121
Piris, 2015, BAP1 and BRAFV600E expression in benign and malignant melanocytic proliferations, Hum. Pathol., 46, 239, 10.1016/j.humpath.2014.10.015
Viros, 2014, Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53, Nature, 511, 478, 10.1038/nature13298
Girotti, 2016, Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma, Cancer Discov., 6, 286, 10.1158/2159-8290.CD-15-1336
Esteller, 2017, The epitranscriptome of noncoding RNAs in cancer, Cancer Discov., 7, 359, 10.1158/2159-8290.CD-16-1292
Dawson, 2012, Cancer epigenetics from mechanism to therapy, Cell, 150, 12, 10.1016/j.cell.2012.06.013
Cerami, 2012, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data: fig. 1, Cancer Discov., 2, 401, 10.1158/2159-8290.CD-12-0095
Gao, 2013, Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal, Sci. Signal., 6
Hayward, 2017, Whole-genome landscapes of major melanoma subtypes, Nature, 545, 175, 10.1038/nature22071
Micevic, 2017, Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities, Clin. Epigenetics, 9, 34, 10.1186/s13148-017-0332-8
Feinberg, 1983, Hypomethylation distinguishes genes of some human cancers from their normal counterparts, Nature, 301, 89, 10.1038/301089a0
Brait, 2011, Cancer epigenetics: above and beyond, Toxicol. Mech. Methods, 21, 275, 10.3109/15376516.2011.562671
Rodríguez-Paredes, 2011, Cancer epigenetics reaches mainstream oncology, Nat. Med., 17, 330, 10.1038/nm.2305
Toyota, 1999, CpG island methylator phenotypes in aging and cancer, Semin. Cancer Biol., 9, 349, 10.1006/scbi.1999.0135
Hughes, 2012, The CpG island methylator phenotype in colorectal cancer: progress and problems, Biochim. Biophys. Acta, 1825, 77
Gallagher, 2005, Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies, Carcinogenesis, 26, 1856, 10.1093/carcin/bgi152
Faller, 2010, Metallothionein 1E is methylated in malignant melanoma and increases sensitivity to cisplatin-induced apoptosis, Melanoma Res., 20, 392, 10.1097/CMR.0b013e32833d32a6
Carmona, 2012, Epigenetic disruption of cadherin-11 in human cancer metastasis, J. Pathol., 228, 230, 10.1002/path.4011
Hill, 2014, DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story, Genomics, 104, 324, 10.1016/j.ygeno.2014.08.012
Lian, 2012, Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma, Cell, 150, 1135, 10.1016/j.cell.2012.07.033
Vizoso, 2015, Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR, Nat. Med., 21, 741, 10.1038/nm.3863
Altemose, 2014, Genomic characterization of large heterochromatic gaps in the human genome assembly, PLoS Comput. Biol., 10, e1003628, 10.1371/journal.pcbi.1003628
Nurse, 2013, Clipping of flexible tails of histones H3 and H4 affects the structure and dynamics of the nucleosome, Biophys. J., 104, 1081, 10.1016/j.bpj.2013.01.019
Bannister, 2011, Regulation of chromatin by histone modifications, Cell Res., 21, 381, 10.1038/cr.2011.22
Kaufman, 2016, A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation, Science, 351, 10.1126/science.aad2197
Verfaillie, 2015, Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state, Nat. Commun., 6, 6683, 10.1038/ncomms7683
Shakhova, 2015, Antagonistic cross-regulation between Sox9 and Sox10 controls an anti-tumorigenic program in melanoma, PLoS Genet., 11, e1004877, 10.1371/journal.pgen.1004877
Hornig, 2016, Inhibition of histone deacetylases in melanoma-a perspective from bench to bedside, Exp. Dermatol., 25, 831, 10.1111/exd.13089
Venza, 2015, Epigenetic regulation of p14ARF and p16INK4A expression in cutaneous and uveal melanoma, Biochim. Biophys. Acta BBA − Gene Regul. Mech., 1849, 247, 10.1016/j.bbagrm.2014.12.004
Cheng, 2014, Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells, Mol. Immunol., 60, 44, 10.1016/j.molimm.2014.02.019
Woan, 2015, Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: enhanced antitumor immunity and impaired cell proliferation, Mol. Oncol., 9, 1447, 10.1016/j.molonc.2015.04.002
Lienlaf, 2016, Essential role of HDAC6 in the regulation of PD-L1 in melanoma, Mol. Oncol., 10, 735, 10.1016/j.molonc.2015.12.012
Chen, 2016, DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines, Tumor Biol., 37, 11209, 10.1007/s13277-016-4994-1
Konstantinov, 2016, Histone variants and melanoma: facts and hypotheses, Pigment Cell Melanoma Res., 29, 426, 10.1111/pcmr.12467
Kapoor, 2010, The histone variant macroH2A suppresses melanoma progression through regulation of CDK8, Nature, 468, 1105, 10.1038/nature09590
Lei, 2014, MacroH2A suppresses the proliferation of the B16 melanoma cell line, Mol. Med. Rep., 10, 1845, 10.3892/mmr.2014.2482
Vardabasso, 2016, Histone variant H2A.Z.2: A novel driver of melanoma progression, Mol. Cell. Oncol., 3, e1073417, 10.1080/23723556.2015.1073417
Vardabasso, 2015, Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma, Mol. Cell., 59, 75, 10.1016/j.molcel.2015.05.009
Kumar, 2016, Epigenomic regulation of oncogenesis by chromatin remodeling, Oncogene, 35, 4423, 10.1038/onc.2015.513
Kadoch, 2015, Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics, Sci. Adv., 1, e1500447, 10.1126/sciadv.1500447
Wang, 2014, Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer-Mechanisms and potential therapeutic insights, Clin. Cancer Res., 20, 21, 10.1158/1078-0432.CCR-13-0280
Lee, 2015, Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naïve patient melanomas, Clin. Epigenetics, 7, 59, 10.1186/s13148-015-0091-3
Zhou, 2016, INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma, Genes Dev., 30, 1440, 10.1101/gad.277178.115
Wang, 2016, Remodeling super-enhancers and oncogenic transcription, cell cycle georget, Tex, 15, 3157
Dar, 2016, BPTF transduces MITF-driven prosurvival signals in melanoma cells, Proc. Natl. Acad. Sci., 113, 6254, 10.1073/pnas.1606027113
Koludrovic, 2015, Chromatin-remodelling complex NURF is essential for differentiation of adult melanocyte stem cells, PLoS Genet., 11, e1005555, 10.1371/journal.pgen.1005555
Comet, 2016, Maintaining cell identity: PRC2-mediated regulation of transcription and cancer, Nat. Rev. Cancer, 16, 803, 10.1038/nrc.2016.83
Souroullas, 2016, An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation, Nat. Med., 22, 632, 10.1038/nm.4092
Tiffen, 2015, EZH2: an emerging role in melanoma biology and strategies for targeted therapy, Pigment Cell Melanoma Res., 28, 21, 10.1111/pcmr.12280
Sengupta, 2016, Quantitative histone mass spectrometry identifies elevated histone H3 lysine 27 (Lys27) trimethylation in melanoma, Mol. Cell. Proteom. MCP, 15, 765, 10.1074/mcp.M115.053363
Goodall, 2008, Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells, Cancer Res., 68, 7788, 10.1158/0008-5472.CAN-08-1053
Fane, 2017, NFIB mediates BRN2 driven melanoma cell migration and invasion through regulation of EZH2 and MITF, EBioMedicine, 16, 63, 10.1016/j.ebiom.2017.01.013
De Raedt, 2014, PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies, Nature, 514, 247, 10.1038/nature13561
Leucci, 2016, The emerging role of long non-coding RNAs in cutaneous melanoma, Pigment Cell Melanoma Res., 29, 619, 10.1111/pcmr.12537
Richtig, 2017, Function and clinical implications of long non-coding RNAs in melanoma, Int. J. Mol. Sci., 18, 715, 10.3390/ijms18040715
Leucci, 2016, Melanoma addiction to the long non-coding RNA SAMMSON, Nature, 531, 518, 10.1038/nature17161
Latchana, 2016, MicroRNA dysregulation in melanoma, Surg. Oncol., 25, 184, 10.1016/j.suronc.2016.05.017
Lujambio, 2008, A microRNA DNA methylation signature for human cancer metastasis, Proc. Natl. Acad. Sci., 105, 13556, 10.1073/pnas.0803055105
Hanniford, 2015, A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis, Clin. Cancer Res., 21, 4903, 10.1158/1078-0432.CCR-14-2566
Tembe, 2015, MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with BRAF mutation and patient prognosis, Pigment Cell Melanoma Res., 28, 254, 10.1111/pcmr.12343
Larrea, 2016, New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies, Int. J. Mol. Sci., 17, 627, 10.3390/ijms17050627
Pfeffer, 2015, Detection of exosomal miRNAs in the plasma of melanoma patients, J. Clin. Med., 4, 2012, 10.3390/jcm4121957
Alegre, 2014, Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma, Arch. Pathol. Lab. Med., 138, 828, 10.5858/arpa.2013-0134-OA
Fridman, 2017, The immune contexture in cancer prognosis and treatment, Nat. Rev. Clin. Oncol., 10.1038/nrclinonc.2017.101
Redman, 2016, Advances in immunotherapy for melanoma, BMC Med., 14, 10.1186/s12916-016-0571-0
Dunn, 2017, Epigenetics and immunotherapy. The current state of play, Mol. Immunol., 87, 227, 10.1016/j.molimm.2017.04.012
Woods, 2015, HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade, Cancer Immunol. Res., 3, 1375, 10.1158/2326-6066.CIR-15-0077-T
Chiappinelli, 2016, Combining epigenetic and immunotherapy to combat cancer, Cancer Res., 76, 1683, 10.1158/0008-5472.CAN-15-2125
Miranda, 2009, DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation, Mol. Cancer Ther., 8, 1579, 10.1158/1535-7163.MCT-09-0013
Rajkumar, 2016, Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies, Br. J. Cancer., 115, 145, 10.1038/bjc.2016.195
Lee, 2015, 5-Hydroxymethylcytosine expression in metastatic melanoma versus nodal nevus in sentinel lymph node biopsies, Mod. Pathol., 28, 218, 10.1038/modpathol.2014.99
Olvedy, 2017, Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma, J. Clin. Invest., 127, 2310, 10.1172/JCI91291
Kohonen-Corish, 2006, Promoter hypermethylation of the O(6)-methylguanine DNA methyltransferase gene and microsatellite instability in metastatic melanoma, J. Invest. Dermatol., 126, 167, 10.1038/sj.jid.5700005
Tuominen, 2015, MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma: MGMT associated with TMZ response and PFS, Int. J. Cancer., 136, 2844, 10.1002/ijc.29332
Jonsson, 2010, High Frequency of p16INK4A Promoter Methylation in NRAS-Mutated Cutaneous Melanoma, J. Invest. Dermatol., 130, 2809, 10.1038/jid.2010.216
Mirmohammadsadegh, 2006, Epigenetic Silencing of the PTEN Gene in Melanoma, Cancer Res., 66, 6546, 10.1158/0008-5472.CAN-06-0384
Lahtz, 2010, Methylation of PTEN as a Prognostic Factor in Malignant Melanoma of the Skin, J. Invest. Dermatol., 130, 620, 10.1038/jid.2009.226
Hoon, 2004, Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients, Oncogene, 23, 4014, 10.1038/sj.onc.1207505
Fan, 2010, Silencing and re-expression of retinoic acid receptor beta2 in human melanoma: RAR-β2 in human melanoma, Pigment Cell Melanoma Res., 23, 419, 10.1111/j.1755-148X.2010.00702.x
Tellez, 2009, CpG island methylation profiling in human melanoma cell lines, Melanoma Res., 19, 146, 10.1097/CMR.0b013e32832b274e