Effect of nanotextured array of conical features on explosive boiling over a flat substrate: A nonequilibrium molecular dynamics study

International Journal of Heat and Mass Transfer - Tập 66 - Trang 613-624 - 2013
Hamid Reza Seyf1, Yuwen Zhang1
1Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA

Tài liệu tham khảo

Skripov, 1974 Alekseev, 1987, Acoustic diagnostics of transient interaction processes between optical radiation and a highly absorbing dielectric fluid, Sov. Phys. Acoust., 33, 561 Samokhin, 1990, In effect of laser radiation on absorbing condensed matter, 13 Karabutov, 1995, Dynamic shift of boiling point under laser action on metals, Kv Elektronika, 22, 820 Park, 1996, Optical probing of the temperature transients during pulsed-laser induced boiling of liquids, Appl. Phys. Lett., 68, 596, 10.1063/1.116479 Park, 1996, Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface, J. Appl. Phys., 80, 4072, 10.1063/1.363370 Kim, 1998, Pulsed laser-induced ablation of absorbing liquids and acoustic-transient generation, Appl. Phys. A Mater. Sci. Proc., 67, 169, 10.1007/s003390050756 Xu, 1999, Interface kinetics during pulsed laser ablation, Appl. Phys. A, 69, S869, 10.1007/s003390051549 Yoo, 2000, Explosive change in crater properties during high power nanosecond laser ablation of silicon, J. Appl. Phys., 88, 1638, 10.1063/1.373865 E.T. Karim, Z. Lin, L.V. Zhigilei, Molecular dynamics study of femtosecond laser interactions with Cr targets, in: International symposium on high power laser ablation, 2012, pp. 280–293. DOI: 10.1063/1.4739881. Dou, 2001, Explosive boiling of water films adjacent to heated surfaces: a microscopic description, J. Phys. Chem. A, 105, 2748, 10.1021/jp003913o Ahn, 2009, Pool boiling experiments on a vano-structured surface, IEEE Trans. Compon. Packag. Technol., 32, 156, 10.1109/TCAPT.2009.2013980 Chen, 2008, Nanostructured copper interfaces for enhanced boiling, Small, 4, 1084, 10.1002/smll.200700991 Chen, 2009, Nanowires for enhanced boiling heat transfer, Nano Lett., 9, 549, 10.1021/nl8026857 Zhu, 2010, Nanostructured photon management for high performance solar cells, Mater. Sci. Eng., R70, 330, 10.1016/j.mser.2010.06.018 Wang, 2005, Growth of Y-Shaped nanorods through physical vapor deposition, Nano Lett., 5, 2505, 10.1021/nl0518425 Su, 2003, Fabrication of two-dimensional arrays of CdSe pillars using E-Beam lithography and electrochemical deposition, Adv. Mater., 15, 49, 10.1002/adma.200390008 Maruyama, 1999, A study on thermal resistance over a solid-liquid interface by the molecular dynamics method, Therm. Sci. Eng., 7, 63 Seyf, 2013, Molecular dynamics simulation of normal and explosive boiling on nanostructured surface, J. Heat Transfer Yi, 2002, Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface, Int. J. Heat Mass Transfer, 45, 2087, 10.1016/S0017-9310(01)00310-6 Gu, 2005, Atomic dynamics of explosive boiling of liquid-argon films, Appl. Phys. B, 81, 675, 10.1007/s00340-005-1906-2 Wu, 2006, Molecular dynamics simulation of thin film evaporation of Lennard–Jones liquid, Nanoscale Microscale Thermophys. Eng., 10, 157, 10.1080/10893950600643030 Novak, 2007, Comparison of heterogeneous and homogeneous bubble nucleation using molecular simulations, Phys. Rev. B, 75, 085413, 10.1103/PhysRevB.75.085413 Maroo, 2009, Nanoscale liquid–vapor phase-change physics in nonevaporating region at the three-phase contact line, J. Appl. Phys., 106, 064911, 10.1063/1.3225992 Maroo, 2010, Heat transfer characteristics and pressure variation in a nanoscale evaporating meniscus, Int. J. Heat Mass Transfer, 53, 3335, 10.1016/j.ijheatmasstransfer.2010.02.030 Yu, 2012, A molecular dynamics investigation on evaporation of thin liquid films, Int. J. Heat Mass Transfer, 55, 1218, 10.1016/j.ijheatmasstransfer.2011.09.035 Morshed, 2011, Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study, Appl. Phys. A, 105, 445, 10.1007/s00339-011-6577-8 Daw, 1984, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29, 6443, 10.1103/PhysRevB.29.6443 G. Nagayama, M. Kawagoe, T. Tsuruta, Molecular dynamics simulations of interfacial heat and mass transfer at nanostructured surface, in: Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems (MNC) 21410, 2007, pp. 1–10. Agrawal, 2005, Predicting trends in rate parameters for self-diffusion on FCC metal surfaces, Surf. Sci., 515, 21, 10.1016/S0039-6028(02)01916-7 S. Matsumoto, S. Maruyama, H. Saruwatari, A molecular dynamics simulation of a liquid droplet on a solid surface, in: Proc ASME/JSME Thermal Engineering Joint Conf., Maui, 1995, pp. 557–562. Maruyama, 1998, Liquid droplet in contact with a solid surface, Microscale Thermophys. Eng., 2–1, 49