Neurovascular MRI with dynamic contrast-enhanced subtraction angiography
Tóm tắt
The first generation of digital subtraction MR angiography using thick-slab contrast-enhanced 2D projection techniques has confirmed the potential of MRI to produce noninvasive subsecond angiograms of the craniocervical circulation. As time-resolved techniques become more sophisticated and 3D acquisitions can be obtained with high isotropic spatial resolution we may start to see the demise of catheter angiography as a diagnostic procedure.
Tài liệu tham khảo
Marks MP (1995) Vascular malformations. Magn Reson Imaging Clin North Am 3: 485–491
Wilcock DJ, Jaspan T, Worthington BS (1995) Problems and pitfalls of 3-D TOF magnetic resonance angiography of the intracranial circulation. Clin Radiol 50: 526–532
Farb RI, McGregor C, Kim JK et al (2001) Intracranial arteriovenous malformations: real-time auto-triggered elliptic centric-ordered 3D gadolinium-enhanced MR angiography—initial assessment. Radiology 220: 244–251
Wilman AH, Riederer SJ (1997) Performance of an elliptical centric view order for signal enhancement and motion artefact suppression in breath-hold three-dimensional gradient echo imaging. Magn Reson Med 38: 793–802
Korosec FR, Frayne R, Grist TM, Mistretta C (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36: 345–351
Carroll TJ, Korosec FR, Petermann GM, Grist TM, Turski PA (2001) Carotid bifurcation: evaluation of time-resolved three-dimensional MR angiography. Radiology 220: 525–532
Van Vaals JJ, Brummer ME, Dixon WT, et al (1993) "Keyhole" method for accelerating imaging of contrast uptake. J Magn Reson Imaging 3: 671–675
Doyle M, Walsh EG, Blackwell GG, Pohost G (1995). Block regional interpolation scheme for k-space (BRISK): a rapid cardiac imaging technique. Magn Reson Med 33: 163–170
Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ (1988) MR fluoroscopy: technical feasibility. Magn Reson Med 8: 1–15
Mistretta CA, Grist TM, Korosec FR, et al (1998) 3D time-resolved contrast-enhanced MR DSA: advantages and tradeoffs. Magn Reson Med 40: 571–581
Frayne R, Grist TM, Swan JS, Peters DC, Korosec FR, Mistretta CA (2000) 3D MR DSA: effects of injection protocol and image masking. J Magn Reson Imaging 12: 476–487
Peters DC, Korosec FR, Grist TM, et al (2000) Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 43: 91–101
Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48: 297–305
Carroll TJ (2002) The emergence of time-resolved contrast-enhanced MR imaging for intracranial angiography. AJNR 23: 346–348
Wang Y, Johnston DL, Breen JF, et al (1996) Dynamic MR digital subtraction angiography using contrast enhancement, fast data acquisition, and complex subtraction. Magn Reson Med 36: 551–556
Hennig J, Scheffler K, Laubenberger J, Strecker R (1997) Time resolved projection angiography after bolus injection of contrast agent. Magn Reson Med 37: 341–345
Strecker R, Scheffler K, Klisch J, et al (2000) Fast functional MRA using time-resolved projection MR-angiography with correlation analysis. Magn Reson Med 43: 303–309
Mori H, Aoki S, Okubo, et al (2003) Two-dimensional thick-slice MR digital subtraction angiography in the assessment of small to medium-size intracranial arteriovenous malformations. Neuroradiology 45: 27–33
Wetzel SG, Bilecen D, Lyrer P, et al (2000) Cerebral dural arteriovenous fistulas: detection by dynamic MR projection angiography. Am J Roentgenol 174: 1293–1295
Griffiths PD, Hoggard N, Warren DJ, Wilkinson ID, Anderson B, Romanowski CA (2000) Brain arteriovenous malformations: assessment with dynamic MR digital subtraction angiography. AJNR 21: 1892–1899
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962
Golay X, Brown SJ, Itoh R, et al (2001) Time-resolved contrast-enhanced carotid MR angiography using sensitivity encoding (SENSE). AJNR 22: 1615–1619
Aoki S, Yoshikawa T, Hori M, et al (2000) MR digital subtraction angiography for the assessment of cranial arteriovenous malformations and fistulas. Am J Roentgenol 175: 451–453
Tsuchiya K, Katase S, Yoshino A, Hachiya J (2000) MR digital subtraction angiography of cerebral arteriovenous malformations. AJNR 21: 707–711
Warren DJ, Hoggard N, Walton L, et al (2001) Cerebral arteriovenous malformations: comparison of novel magnetic resonance angiographic techniques and conventional catheter angiography. Neurosurgery 48: 973–982
Klisch J, Strecker R, Hennig J, Schumacher (2000) Time-resolved projection MRA: clinical application in intracranial vascular malformations. Neuroradiology 42: 104–107
Coley SC, Romanowski CAJ, Hodgson TJ, Griffiths PD (2002). Dural arteriovenous fistulae: non-invasive diagnosis with dynamic MR digital subtraction angiography. AJNR 23: 404–407
Lasjaunias P, Chiu M, Terbrugge KT, et al (1986) Neurological manifestations of intracranial dural sinus arteriovenous malformations. J Neurosurg 64: 724–730
Aoki S, Yoshikawa T, Hori M, et al (2000) Two-dimensional thick-slice MR digital subtraction angiography for assessment of cerebrovascular occlusive diseases. Eur Radiol 10: 1858–1864
Wetzel SG, Haselhurst R, Bilecen, et al (2001) Preliminary experience with dynamic MR projection angiography in the evaluation of cervico-cranial steno-occlusive disease. Eur Radiol 11: 295–302
Connolly D, Jenkins S, Birchall D, English P, Mandel C (2002) Dynamic subtraction MR venography for the detection of dural sinus thrombosis: a new real-time imaging technique. Neuroradiology 44: 185 (abstract)