Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper
Tài liệu tham khảo
Mudawar, 2001, Assessment of high-heat-flux thermal management schemes, IEEE Trans. Compon. Packag. Technol, 24, 122, 10.1109/6144.926375
Peng, 1996, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transfer, 19, 2599, 10.1016/0017-9310(95)00327-4
W. Qu, I. Mudawar, Transport phenomena in two-phase micro-channel heat sinks, in: Proceedings of the ASME International Mechanical Engineering Congress & Exposition, New Orleans, LA, 2002, Paper #IMECE2002-33711.
Celata, 1997, Geometrical effects on sub-cooled flow boiling critical heat flux, Rev. Gen. Therm., 36, 807, 10.1016/S0035-3159(97)87751-3
Cavalini, 2006, Update on condensation heat transfer and pressure drop inside minichannels, Heat Transfer Eng., 27, 74, 10.1080/01457630500523907
Bao, 2000, Flow boiling heat transfer of Freon R-11 and HCFC 123 in narrow passages, Int. J. Heat Mass Transfer, 43, 3347, 10.1016/S0017-9310(99)00379-8
Jacobi, 2002, Heat transfer model for evaporation of elongated bubble flows in microchannels, J. Heat Transfer, 124, 1131, 10.1115/1.1517274
Thome, 2004, Heat transfer model for evaporation in microchannels, Part I: Presentation of the model, Int. J. Heat Mass Transfer, 47, 3375, 10.1016/j.ijheatmasstransfer.2004.01.006
Chen, 2009, Nanowires Enhanced Boiling Heat Transfer Nanolett., 9, 548
Ahn, 2006, Pool boiling experiments on multiwalled carbon nanotube forests, J. Heat Transfer, 128, 1335, 10.1115/1.2349511
Li, 2008, Nanostructured copper interfaces for enhanced boiling, Small, 1
Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transfer, 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030
Pioro, 2004, Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface, Int. J. Heat Mass Transfer, 47, 5033, 10.1016/j.ijheatmasstransfer.2004.06.019
Gambill, 1989, An upper bound for the critical boiling heat flux, J. Heat Transfer, 111, 815, 10.1115/1.3250759
Chang, 2006, Nanocrystalline CdS MISFETs fabricated by a novel continuous flow microreactor, Electrochem. Solid-State Lett., 9, G174, 10.1149/1.2183847
Chang, 2009, Investigate the reacting flux of chemical bath deposition by a continuous flow microreactor, Electrochem. Solid-State Lett., 12, H244, 10.1149/1.3117211
Tseng, 2007, Comparison of batch mixing and micromixing approaches in the synthesis and deposition of ceria nanoparticles, Trans. NAMRI, 35
Han, 2007, Chemical nanoparticle deposition of transparent ZnO thin films, Electrochem. Solid-State Lett., 10, K1, 10.1149/1.2372228
Jung, 2008, The growth of the flower-like ZnO structure using a continuous flow microreactor, Curr. Appl. Phys., 8, 720, 10.1016/j.cap.2007.04.026
Chang, 2008, Synthesis and post-processing of nanomaterials using microreaction technology, J. Nanoparticle Res., 10, 10.1007/s11051-007-9355-y
Liu, 2007, High rate convergent synthesis and deposition of polyamide dendrimers using a continuous flow microreactor, Chem. Eng. Technol., 30, 334, 10.1002/ceat.200600353
Mugdur, 2007, A comparison of chemical bath deposition of CdS from a batch reactor and a continuous-flow microreactor, J. Electrochem. Soc., 154, D482, 10.1149/1.2757012
Han, 2007, Chemical nanoparticle deposition of transparent ZnO thin films, Electrochem. Solid-State Lett., 10, K1, 10.1149/1.2372228
Wang, 1993, Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, J. Heat Transfer, 115, 659, 10.1115/1.2910737
Liaw, 1986, Effect of surface wettability on transition boiling heat transfer from a vertical surface, Proc. Int. Heat Transfer Conf., San Francisco, 4, 2031
Dhir, 1998, Boiling heat transfer, Ann. Rev. Fluid Mech., 36, 365, 10.1146/annurev.fluid.30.1.365
Theofanous, 2002, The boiling crisis phenomenon. Part I: Nucleation and nucleate boiling heat transfer, Exp. Therm. Fluid Sci., 26, 775, 10.1016/S0894-1777(02)00192-9
Cavicchi, 2007, Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles, Phys. Rev. Lett., 98, 124501, 10.1103/PhysRevLett.98.124501
Lauga, 2004, Dynamic mechanisms for apparent slip on hydrophobic surfaces, Phys. Rev. E, 70, 026311, 10.1103/PhysRevE.70.026311
De Gennes, 2002, On fluid/wall slippage, Langmuir, 18, 3413, 10.1021/la0116342
Carey, 1992
Chung, 2007, A nucleate boiling limitation model for the prediction of pool boiling CHF, Int. J. Heat Mass Transfer, 50, 2944, 10.1016/j.ijheatmasstransfer.2006.12.023
Auracher, 2004, Heat transfer characteristics and mechanisms along entire boiling curves under steady-state and transient conditions, Int. J. Heat Fluid Flow, 25, 223, 10.1016/j.ijheatfluidflow.2003.11.011
Haramura, 1983, A new hydrodynamic model of critical heat flux, applicable widely to pool and forced convection boiling on submerged bodies in saturated liquids, Int. J. Heat Mass Transfer, 26, 389, 10.1016/0017-9310(83)90043-1