Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper

International Journal of Heat and Mass Transfer - Tập 53 - Trang 3357-3365 - 2010
Terry J. Hendricks1, Shankar Krishnan1, Changho Choi2, Chih-Hung Chang2, Brian Paul3
1Battelle/Pacific Northwest National Laboratory, MicroProducts Breakthrough Institute, 1000 NE Circle Boulevard, Suite 11101 Corvallis, OR 97330, USA
2School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
3School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA

Tài liệu tham khảo

Mudawar, 2001, Assessment of high-heat-flux thermal management schemes, IEEE Trans. Compon. Packag. Technol, 24, 122, 10.1109/6144.926375 Peng, 1996, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transfer, 19, 2599, 10.1016/0017-9310(95)00327-4 W. Qu, I. Mudawar, Transport phenomena in two-phase micro-channel heat sinks, in: Proceedings of the ASME International Mechanical Engineering Congress & Exposition, New Orleans, LA, 2002, Paper #IMECE2002-33711. Celata, 1997, Geometrical effects on sub-cooled flow boiling critical heat flux, Rev. Gen. Therm., 36, 807, 10.1016/S0035-3159(97)87751-3 Cavalini, 2006, Update on condensation heat transfer and pressure drop inside minichannels, Heat Transfer Eng., 27, 74, 10.1080/01457630500523907 Bao, 2000, Flow boiling heat transfer of Freon R-11 and HCFC 123 in narrow passages, Int. J. Heat Mass Transfer, 43, 3347, 10.1016/S0017-9310(99)00379-8 Jacobi, 2002, Heat transfer model for evaporation of elongated bubble flows in microchannels, J. Heat Transfer, 124, 1131, 10.1115/1.1517274 Thome, 2004, Heat transfer model for evaporation in microchannels, Part I: Presentation of the model, Int. J. Heat Mass Transfer, 47, 3375, 10.1016/j.ijheatmasstransfer.2004.01.006 Chen, 2009, Nanowires Enhanced Boiling Heat Transfer Nanolett., 9, 548 Ahn, 2006, Pool boiling experiments on multiwalled carbon nanotube forests, J. Heat Transfer, 128, 1335, 10.1115/1.2349511 Li, 2008, Nanostructured copper interfaces for enhanced boiling, Small, 1 Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transfer, 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030 Pioro, 2004, Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface, Int. J. Heat Mass Transfer, 47, 5033, 10.1016/j.ijheatmasstransfer.2004.06.019 Gambill, 1989, An upper bound for the critical boiling heat flux, J. Heat Transfer, 111, 815, 10.1115/1.3250759 Chang, 2006, Nanocrystalline CdS MISFETs fabricated by a novel continuous flow microreactor, Electrochem. Solid-State Lett., 9, G174, 10.1149/1.2183847 Chang, 2009, Investigate the reacting flux of chemical bath deposition by a continuous flow microreactor, Electrochem. Solid-State Lett., 12, H244, 10.1149/1.3117211 Tseng, 2007, Comparison of batch mixing and micromixing approaches in the synthesis and deposition of ceria nanoparticles, Trans. NAMRI, 35 Han, 2007, Chemical nanoparticle deposition of transparent ZnO thin films, Electrochem. Solid-State Lett., 10, K1, 10.1149/1.2372228 Jung, 2008, The growth of the flower-like ZnO structure using a continuous flow microreactor, Curr. Appl. Phys., 8, 720, 10.1016/j.cap.2007.04.026 Chang, 2008, Synthesis and post-processing of nanomaterials using microreaction technology, J. Nanoparticle Res., 10, 10.1007/s11051-007-9355-y Liu, 2007, High rate convergent synthesis and deposition of polyamide dendrimers using a continuous flow microreactor, Chem. Eng. Technol., 30, 334, 10.1002/ceat.200600353 Mugdur, 2007, A comparison of chemical bath deposition of CdS from a batch reactor and a continuous-flow microreactor, J. Electrochem. Soc., 154, D482, 10.1149/1.2757012 Han, 2007, Chemical nanoparticle deposition of transparent ZnO thin films, Electrochem. Solid-State Lett., 10, K1, 10.1149/1.2372228 Wang, 1993, Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, J. Heat Transfer, 115, 659, 10.1115/1.2910737 Liaw, 1986, Effect of surface wettability on transition boiling heat transfer from a vertical surface, Proc. Int. Heat Transfer Conf., San Francisco, 4, 2031 Dhir, 1998, Boiling heat transfer, Ann. Rev. Fluid Mech., 36, 365, 10.1146/annurev.fluid.30.1.365 Theofanous, 2002, The boiling crisis phenomenon. Part I: Nucleation and nucleate boiling heat transfer, Exp. Therm. Fluid Sci., 26, 775, 10.1016/S0894-1777(02)00192-9 Cavicchi, 2007, Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles, Phys. Rev. Lett., 98, 124501, 10.1103/PhysRevLett.98.124501 Lauga, 2004, Dynamic mechanisms for apparent slip on hydrophobic surfaces, Phys. Rev. E, 70, 026311, 10.1103/PhysRevE.70.026311 De Gennes, 2002, On fluid/wall slippage, Langmuir, 18, 3413, 10.1021/la0116342 Carey, 1992 Chung, 2007, A nucleate boiling limitation model for the prediction of pool boiling CHF, Int. J. Heat Mass Transfer, 50, 2944, 10.1016/j.ijheatmasstransfer.2006.12.023 Auracher, 2004, Heat transfer characteristics and mechanisms along entire boiling curves under steady-state and transient conditions, Int. J. Heat Fluid Flow, 25, 223, 10.1016/j.ijheatfluidflow.2003.11.011 Haramura, 1983, A new hydrodynamic model of critical heat flux, applicable widely to pool and forced convection boiling on submerged bodies in saturated liquids, Int. J. Heat Mass Transfer, 26, 389, 10.1016/0017-9310(83)90043-1