Policies for Ecological Intensification of Crop Production

Trends in Ecology & Evolution - Tập 34 - Trang 282-286 - 2019
Lucas A. Garibaldi1, Néstor Pérez-Méndez1, Michael P.D. Garratt2, Barbara Gemmill-Herren3, Fernando E. Miguez4, Lynn V. Dicks5
1Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Sede Andina, Universidad Nacional de Río Negro (UNRN) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mitre 630, CP 8400 San Carlos de Bariloche, Río Negro, Argentina
2Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
3World Agroforestry Centre, Nairobi, Kenya
4Department of Agronomy, Iowa State University, Ames, IA, USA
5School of Biological Sciences, University of East Anglia, Norwich, UK

Tài liệu tham khảo

Cui, 2018, Pursuing sustainable productivity with millions of smallholder farmers, Nature, 555, 363, 10.1038/nature25785 Bommarco, 2013, Ecological intensification: harnessing ecosystem services for food security, Trends Ecol. Evol., 28, 230, 10.1016/j.tree.2012.10.012 Garibaldi, 2017, Farming approaches for greater biodiversity, livelihoods, and food security, Trends Ecol. Evol., 32, 68, 10.1016/j.tree.2016.10.001 Garibaldi, 2016, Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms, Science, 351, 388, 10.1126/science.aac7287 Bender, 2016, An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability, Trends Ecol. Evol., 31, 440, 10.1016/j.tree.2016.02.016 Gurr, 2016, Multi-country evidence that crop diversification promotes ecological intensification of agriculture, Nat. Plants, 2, 22, 10.1038/nplants.2016.14 Garibaldi, 2014, From research to action: enhancing crop yield through wild pollinators, Front. Ecol. Environ., 12, 439, 10.1890/130330 Jepson, 2014, Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification, Philos. Trans. R. Soc. B Biol. Sci., 369, 20130491, 10.1098/rstb.2013.0491 Lechenet, 2017, Reducing pesticide use while preserving crop productivity and profitability on arable farms, Nat. Plants, 3, 17008, 10.1038/nplants.2017.8 Kibblewhite, 2008, Soil health in agricultural systems, Philos. Trans. R. Soc. B Biol. Sci., 363, 685, 10.1098/rstb.2007.2178 Tsiafouli, 2015, Intensive agriculture reduces soil biodiversity across Europe, Glob. Change Biol., 21, 973, 10.1111/gcb.12752 Schulte, 2017, Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands, Proc. Natl. Acad. Sci. U. S. A., 114, 10.1073/pnas.1620229114 Ramankutty, 2018, Trends in global agricultural land use: implications for environmental health and food security, Annu. Rev. Plant Biol., 69, 10.1146/annurev-arplant-042817-040256 Scheper, 2013, Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss–a meta-analysis, Ecol. Lett., 16, 912, 10.1111/ele.12128 Winfree, 2018, Species turnover promotes the importance of bee diversity for crop pollination at regional scales, Science, 359, 791, 10.1126/science.aao2117 Dicks, 2016, Ten policies for pollinators: what governments can do to safeguard pollination services, Science, 354, 975, 10.1126/science.aai9226 Blaauw, 2014, Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop, J. Appl. Ecol., 51, 890, 10.1111/1365-2664.12257 Lipper, 2014, Climate-smart agriculture for food security, Nat. Clim. Change, 4, 1068, 10.1038/nclimate2437 Herrero, 2017, Farming and the geography of nutrient production for human use: a transdisciplinary analysis, Lancet Planet. Heal., 1, e33, 10.1016/S2542-5196(17)30007-4 Pretty, 2018, Global assessment of agricultural system redesign for sustainable intensification, Nat. Sustain., 1, 441, 10.1038/s41893-018-0114-0