MicroRNA Regulatory Networks in Cardiovascular Development
Tài liệu tham khảo
Ambros, 2004, The functions of animal microRNAs, Nature, 431, 350, 10.1038/nature02871
Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5
Bartel, 2009, MicroRNAs: target recognition and regulatory functions, Cell, 136, 215, 10.1016/j.cell.2009.01.002
Bhattacharyya, 2006, Relief of microRNA-mediated translational repression in human cells subjected to stress, Cell, 125, 1111, 10.1016/j.cell.2006.04.031
Boettger, 2009, Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster, J. Clin. Invest., 119, 2634, 10.1172/JCI38864
Bonauer, 2009, MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice, Science, 324, 1710, 10.1126/science.1174381
Boutz, 2007, MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development, Genes Dev., 21, 71, 10.1101/gad.1500707
Bruneau, 2008, The developmental genetics of congenital heart disease, Nature, 451, 943, 10.1038/nature06801
Cai, 2004, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA, 10, 1957, 10.1261/rna.7135204
Callis, 2009, MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice, J. Clin. Invest., 119, 2772, 10.1172/JCI36154
Carè, 2007, MicroRNA-133 controls cardiac hypertrophy, Nat. Med., 13, 613, 10.1038/nm1582
Carmeliet, 2003, Angiogenesis in health and disease, Nat. Med., 9, 653, 10.1038/nm0603-653
Chen, 2006, The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, Nat. Genet., 38, 228, 10.1038/ng1725
Chen, 2008, Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure, Proc. Natl. Acad. Sci. USA, 105, 2111, 10.1073/pnas.0710228105
Chendrimada, 2005, TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing, Nature, 436, 740, 10.1038/nature03868
Cheng, 2009, MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation, Circ. Res., 105, 158, 10.1161/CIRCRESAHA.109.197517
Choi, 2007, Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430, Science, 318, 271, 10.1126/science.1147535
Clop, 2006, A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep, Nat. Genet., 38, 813, 10.1038/ng1810
Cook, 2002, Transcriptional effects of chronic Akt activation in the heart, J. Biol. Chem., 277, 22528, 10.1074/jbc.M201462200
Cordes, 2009, miR-145 and miR-143 regulate smooth muscle cell fate and plasticity, Nature, 460, 705, 10.1038/nature08195
Crabtree, 2002, NFAT signaling: choreographing the social lives of cells, Cell, 109, S67, 10.1016/S0092-8674(02)00699-2
Crawford, 2008, MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines, Biochem. Biophys. Res. Commun., 373, 607, 10.1016/j.bbrc.2008.06.090
da Costa Martins, 2008, Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling, Circulation, 118, 1567, 10.1161/CIRCULATIONAHA.108.769984
Denli, 2004, Processing of primary microRNAs by the Microprocessor complex, Nature, 432, 231, 10.1038/nature03049
Dews, 2006, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster, Nat. Genet., 38, 1060, 10.1038/ng1855
Divakaran, 2008, The emerging role of microRNAs in cardiac remodeling and heart failure, Circ. Res., 103, 1072, 10.1161/CIRCRESAHA.108.183087
Duisters, 2009, miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling, Circ. Res., 104, 170, 10.1161/CIRCRESAHA.108.182535
Elia, 2009, The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease, Cell Death Differ., 16, 1590, 10.1038/cdd.2009.153
Filipowicz, 2008, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?, Nat. Rev. Genet., 9, 102, 10.1038/nrg2290
Fish, 2008, miR-126 regulates angiogenic signaling and vascular integrity, Dev. Cell, 15, 272, 10.1016/j.devcel.2008.07.008
Garg, 2006, Molecular genetics of aortic valve disease, Curr. Opin. Cardiol., 21, 180, 10.1097/01.hco.0000221578.18254.70
Gibbings, 2009, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat. Cell Biol., 11, 1143, 10.1038/ncb1929
Gregory, 2004, The Microprocessor complex mediates the genesis of microRNAs, Nature, 432, 235, 10.1038/nature03120
Guo, 2008, The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers, Genes Chromosomes Cancer, 47, 939, 10.1002/gcc.20596
Gupta, 2007, Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure, J. Mol. Cell. Cardiol., 43, 388, 10.1016/j.yjmcc.2007.07.045
Han, 2004, The Drosha-DGCR8 complex in primary microRNA processing, Genes Dev., 18, 3016, 10.1101/gad.1262504
Hoffman, 2002, The incidence of congenital heart disease, J. Am. Coll. Cardiol., 39, 1890, 10.1016/S0735-1097(02)01886-7
Horie, 2009, MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes, Biochem. Biophys. Res. Commun., 389, 315, 10.1016/j.bbrc.2009.08.136
Hunter, 2008, Detection of microRNA expression in human peripheral blood microvesicles, PLoS ONE, 3, e3694, 10.1371/journal.pone.0003694
Ikeda, 2007, Altered microRNA expression in human heart disease, Physiol. Genomics, 31, 367, 10.1152/physiolgenomics.00144.2007
Ikeda, 2009, MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes, Mol. Cell. Biol., 29, 2193, 10.1128/MCB.01222-08
Ito, 2001, The TRAP/SMCC/Mediator complex and thyroid hormone receptor function, Trends Endocrinol. Metab., 12, 127, 10.1016/S1043-2760(00)00355-6
Ivey, 2008, MicroRNA regulation of cell lineages in mouse and human embryonic stem cells, Cell Stem Cell, 2, 219, 10.1016/j.stem.2008.01.016
Khvorova, 2003, Functional siRNAs and miRNAs exhibit strand bias, Cell, 115, 209, 10.1016/S0092-8674(03)00801-8
Kloosterman, 2006, The diverse functions of microRNAs in animal development and disease, Dev. Cell, 11, 441, 10.1016/j.devcel.2006.09.009
Kloosterman, 2004, Substrate requirements for let-7 function in the developing zebrafish embryo, Nucleic Acids Res., 32, 6284, 10.1093/nar/gkh968
Krenz, 2004, Impact of beta-myosin heavy chain expression on cardiac function during stress, J. Am. Coll. Cardiol., 44, 2390, 10.1016/j.jacc.2004.09.044
Kuhnert, 2008, Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126, Development, 135, 3989, 10.1242/dev.029736
Kwon, 2005, MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling, Proc. Natl. Acad. Sci. USA, 102, 18986, 10.1073/pnas.0509535102
Lagos-Quintana, 2002, Identification of tissue-specific microRNAs from mouse, Curr. Biol., 12, 735, 10.1016/S0960-9822(02)00809-6
Laterza, 2009, Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury, Clin. Chem., 55, 1977, 10.1373/clinchem.2009.131797
Latronico, 2009, MicroRNAs and cardiac pathology, Nat. Rev. Cardiol., 6, 419, 10.1038/nrcardio.2009.56
Lee, 2004, Regulation of muscle mass by myostatin, Annu. Rev. Cell Dev. Biol., 20, 61, 10.1146/annurev.cellbio.20.012103.135836
Lee, 2003, The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, 415, 10.1038/nature01957
Lee, 2004, MicroRNA genes are transcribed by RNA polymerase II, EMBO J., 23, 4051, 10.1038/sj.emboj.7600385
Lee, 2007, MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression, Proc. Natl. Acad. Sci. USA, 104, 20350, 10.1073/pnas.0706901104
Leung, 2007, microRNAs: a safeguard against turmoil?, Cell, 130, 581, 10.1016/j.cell.2007.08.010
Li, 2005, A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye, Cell, 123, 1267, 10.1016/j.cell.2005.10.040
Li, 1996, SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis, Circ. Res., 78, 188, 10.1161/01.RES.78.2.188
Li, 2003, The serum response factor coactivator myocardin is required for vascular smooth muscle development, Proc. Natl. Acad. Sci. USA, 100, 9366, 10.1073/pnas.1233635100
Li, 2006, MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila, Genes Dev., 20, 2793, 10.1101/gad.1466306
Lim, 2005, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 433, 769, 10.1038/nature03315
Liu, 2007, An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133, Proc. Natl. Acad. Sci. USA, 104, 20844, 10.1073/pnas.0710558105
Liu, 2008, microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart, Genes Dev., 22, 3242, 10.1101/gad.1738708
Lytle, 2007, Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR, Proc. Natl. Acad. Sci. USA, 104, 9667, 10.1073/pnas.0703820104
McGuigan, 2004, Evolution of sarcomeric myosin heavy chain genes: evidence from fish, Mol. Biol. Evol., 21, 1042, 10.1093/molbev/msh103
McHugh, 1995, Molecular analysis of smooth muscle development in the mouse, Dev. Dyn., 204, 278, 10.1002/aja.1002040306
Mishima, 2009, Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization, Genes Dev., 23, 619, 10.1101/gad.1760209
Miska, 2007, Most Caenorhabditis elegans microRNAs are individually not essential for development or viability, PLoS Genet., 3, e215, 10.1371/journal.pgen.0030215
Mori, 2004, TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed, Curr. Opin. Cardiol., 19, 211, 10.1097/00001573-200405000-00004
Morkin, 2000, Control of cardiac myosin heavy chain gene expression, Microsc. Res. Tech., 50, 522, 10.1002/1097-0029(20000915)50:6<522::AID-JEMT9>3.0.CO;2-U
Morton, 2008, microRNA-138 modulates cardiac patterning during embryonic development, Proc. Natl. Acad. Sci. USA, 105, 17830, 10.1073/pnas.0804673105
Niu, 2008, Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart, Proc. Natl. Acad. Sci. USA, 105, 17824, 10.1073/pnas.0805491105
Olson, 2006, Gene regulatory networks in the evolution and development of the heart, Science, 313, 1922, 10.1126/science.1132292
Olson, 2003, Sizing up the heart: development redux in disease, Genes Dev., 17, 1937, 10.1101/gad.1110103
Owens, 2004, Molecular regulation of vascular smooth muscle cell differentiation in development and disease, Physiol. Rev., 84, 767, 10.1152/physrev.00041.2003
Pipes, 2006, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes Dev., 20, 1545, 10.1101/gad.1428006
Potthoff, 2007, MEF2: a central regulator of diverse developmental programs, Development, 134, 4131, 10.1242/dev.008367
Rao, 2006, Myogenic factors that regulate expression of muscle-specific microRNAs, Proc. Natl. Acad. Sci. USA, 103, 8721, 10.1073/pnas.0602831103
Reinhart, 2000, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, 901, 10.1038/35002607
Rossi, 2009, Two novel/ancient myosins in mammalian skeletal muscles: MYH14 and MYH15 are expressed in extraocular muscles and muscle spindles, J. Physiol., 588, 353, 10.1113/jphysiol.2009.181008
Ruzicka, 1988, Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation, J. Cell Biol., 107, 2575, 10.1083/jcb.107.6.2575
Sayed, 2007, MicroRNAs play an essential role in the development of cardiac hypertrophy, Circ. Res., 100, 416, 10.1161/01.RES.0000257913.42552.23
Schmidt, 2007, EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution, Development, 134, 2913, 10.1242/dev.002576
Schwarz, 2003, Asymmetry in the assembly of the RNAi enzyme complex, Cell, 115, 199, 10.1016/S0092-8674(03)00759-1
Sempere, 2004, Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation, Genome Biol., 5, R13, 10.1186/gb-2004-5-3-r13
Sethupathy, 2008, MicroRNA target site polymorphisms and human disease, Trends Genet., 24, 489, 10.1016/j.tig.2008.07.004
Shan, 2009, Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines, Cardiovasc. Res., 83, 465, 10.1093/cvr/cvp130
Sokol, 2005, Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth, Genes Dev., 19, 2343, 10.1101/gad.1356105
Srivastava, 1995, A subclass of bHLH proteins required for cardiac morphogenesis, Science, 270, 1995, 10.1126/science.270.5244.1995
Srivastava, 1997, Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND, Nat. Genet., 16, 154, 10.1038/ng0697-154
Stainier, 2001, Zebrafish genetics and vertebrate heart formation, Nat. Rev. Genet., 2, 39, 10.1038/35047564
Suárez, 2008, Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis, Proc. Natl. Acad. Sci. USA, 105, 14082, 10.1073/pnas.0804597105
Sun, 2010, miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7, Biochem. Biophys. Res. Commun., 391, 1483, 10.1016/j.bbrc.2009.12.098
Takaya, 2009, MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells, Circ. J., 73, 1492, 10.1253/circj.CJ-08-1032
Tatsuguchi, 2007, Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy, J. Mol. Cell. Cardiol., 42, 1137, 10.1016/j.yjmcc.2007.04.004
Tavazoie, 2008, Endogenous human microRNAs that suppress breast cancer metastasis, Nature, 451, 147, 10.1038/nature06487
Thum, 2007, MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure, Circulation, 116, 258, 10.1161/CIRCULATIONAHA.107.687947
Thum, 2008, MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts, Nature, 456, 980, 10.1038/nature07511
Valadi, 2007, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol., 9, 654, 10.1038/ncb1596
van Rooij, 2007, MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets, J. Clin. Invest., 117, 2369, 10.1172/JCI33099
van Rooij, 2006, A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure, Proc. Natl. Acad. Sci. USA, 103, 18255, 10.1073/pnas.0608791103
van Rooij, 2007, Control of stress-dependent cardiac growth and gene expression by a microRNA, Science, 316, 575, 10.1126/science.1139089
van Rooij, 2008, MicroRNAs flex their muscles, Trends Genet., 24, 159, 10.1016/j.tig.2008.01.007
van Rooij, 2008, Toward microRNA-based therapeutics for heart disease: the sense in antisense, Circ. Res., 103, 919, 10.1161/CIRCRESAHA.108.183426
van Rooij, 2008, Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis, Proc. Natl. Acad. Sci. USA, 105, 13027, 10.1073/pnas.0805038105
van Rooij, 2009, A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance, Dev. Cell, 17, 662, 10.1016/j.devcel.2009.10.013
van Solingen, 2009, Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis, J. Cell. Mol. Med., 13, 1577, 10.1111/j.1582-4934.2008.00613.x
Vasudevan, 2007, Switching from repression to activation: microRNAs can up-regulate translation, Science, 318, 1931, 10.1126/science.1149460
Vella, 2004, The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR, Genes Dev., 18, 132, 10.1101/gad.1165404
Ventura, 2008, Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters, Cell, 132, 875, 10.1016/j.cell.2008.02.019
Wang, 2009, AngiomiRs—key regulators of angiogenesis, Curr. Opin. Genet. Dev., 19, 205, 10.1016/j.gde.2009.04.002
Wang, 2003, Myocardin is a master regulator of smooth muscle gene expression, Proc. Natl. Acad. Sci. USA, 100, 7129, 10.1073/pnas.1232341100
Wang, 2004, Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression, Nature, 428, 185, 10.1038/nature02382
Wang, 2008, The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis, Dev. Cell, 15, 261, 10.1016/j.devcel.2008.07.002
Williams, 2009, Micro-RNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice, Science, 326, 1549, 10.1126/science.1181046
Würdinger, 2008, miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells, Cancer Cell, 14, 382, 10.1016/j.ccr.2008.10.005
Xiao, 2007, MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts, J. Biol. Chem., 282, 12363, 10.1074/jbc.C700015200
Xin, 2009, MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury, Genes Dev., 23, 2166, 10.1101/gad.1842409
Xu, 2007, The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes, J. Cell Sci., 120, 3045, 10.1242/jcs.010728
Xu, 2009, MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells, Cell, 137, 647, 10.1016/j.cell.2009.02.038
Yamagishi, 2002, The 22q11.2 deletion syndrome, Keio J. Med., 51, 77, 10.2302/kjm.51.77
Yang, 2007, The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2, Nat. Med., 13, 486, 10.1038/nm1569
Yekta, 2004, MicroRNA-directed cleavage of HOXB8 mRNA, Science, 304, 594, 10.1126/science.1097434
Yi, 2003, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev., 17, 3011, 10.1101/gad.1158803
Yin, 2008, Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish, Genes Dev., 22, 728, 10.1101/gad.1641808
Zeng, 2009, miR-145 directs intestinal maturation in zebrafish, Proc. Natl. Acad. Sci. USA, 106, 17793, 10.1073/pnas.0903693106
Zhang, 2008, The cell growth suppressor, mir-126, targets IRS-1, Biochem. Biophys. Res. Commun., 377, 136, 10.1016/j.bbrc.2008.09.089
Zhao, 2005, Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis, Nature, 436, 214, 10.1038/nature03817
Zhao, 2007, Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2, Cell, 129, 303, 10.1016/j.cell.2007.03.030
