SOR-like Methods for Augmented Systems
Tóm tắt
Several SOR-like methods are proposed for solving augmented systems. These have many different applications in scientific computing, for example, constrained optimization and the finite element method for solving the Stokes equation. The convergence and the choice of optimal parameter for these algorithms are studied. The convergence and divergence regions for some algorithms are given, and the new algorithms are applied to solve the Stokes equations as well.
Tài liệu tham khảo
M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least-squares problems, Numer. Math., 55 (1989), pp. 667–684.
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
Å. Björck, Numerical stability ofm ethods for solving augmented systems, in Proceedings from Recent Developments in Optimization Theory and Nonlinear Analysis, Jerusalem, 1995, Y. Censor and S. Reich, eds., Contemp. Math., 204, Amer. Math. Soc., Providence, RI, 1997, pp. 51–60.
Å. Björck and C. C. Paige, Solution ofaugm ented linear systems using orthogonal factorization, BIT, 34 (1994), pp. 1–24.
H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33–46.
H. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661.
H. Elman, D J. Silvester, and A. Wathen, Iterative methods for problems in computational fluid dynamics, in Iterative Methods in Scientific Computing, R. Chan, T. F. Chan, and G. H. Golub, eds., Springer-Verlag, Singapore, 1997, pp. 271–327.
B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for augmented systems, BIT, 38 (1998), pp. 527–543.
C. Li, B. Li and D. J. Evans, A generalized successive overrelaxation method for least squares problems, BIT, 38:2 (1998), pp. 347–356.
M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems, Tech. Report, SCCM–99–03, Stanford University, 1999.
S. G. Nash and A. Sofer, Preconditioned reduced matrices, SIAMJ.Matrix Anal. Appl., 17 (1996), pp. 47–68.
N. K. Nichols, On the convergence oftwo-stage iterative processes for solving linear equations, SIAM J. Numer. Anal., 10 (1973), pp. 460–469.
C. H. Santos, B. P. B. Silva, and J.-Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 100 (1998), pp. 1–9.
C. H. Santos and J.-Y. Yuan, Preconditioned conjugate gradient methods for rank deficient least squares problems, J. Comput. Math., 75 (1999), pp.-----.
R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
S. Wright, Stability ofaugm ented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 191–222.
D. M. Young, Iterative Solutions ofL arge Linear Systems, Academic Press, New York, 1971.
D. M. Young, Iterative Methods for Solving Partial Difference Equations of Elliptic Type, Ph.D. Thesis, Department of Mathematics, Harward University, Cambridge, Mass., USA, May 1, 1950.
J.-Y. Yuan, Iterative Methods for Generalized Least Squares Problems, Ph.D. Thesis, IMPA, Riod e Janeiro, Brazil, 1993.
J.-Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 66 (1996), pp. 571–584.
J.-Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 71 (1996), pp. 287–297.