Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress

Comptes Rendus Biologies - Tập 338 - Trang 241-254 - 2015
Imen Challougui Fatnassi1, Manel Chiboub1, Omar Saadani1, Moez Jebara1, Salwa Harzalli Jebara1
1University Tunis El Manar, Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, BP 901, Hammam Lif 2050, Tunisia

Tài liệu tham khảo

Wani, 2008, Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil, Arch. Environ. Contam. Toxicol., 55, 33, 10.1007/s00244-007-9097-y Korashy, 2008, The role of redox-sensitive transcription factors NF-κB and AP-1 in the modulation of the Cyp1a1 gene by mercury, lead, and copper, Biol. Med., 44, 795 Zaidi, 2012, Bioremediation: A Natural Method for the Management of Polluted Environment, 101 Ahemad, 2010, Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress, Pest. Biochem. Physiol., 98, 183, 10.1016/j.pestbp.2010.06.005 Habi, 2009, Plasmid incidence antibiotic and metal resistance among Enterobacteriaceae isolated from Algerian stream, Pak. J. Biol. Sci., 12, 1474, 10.3923/pjbs.2009.1474.1482 Zolgharnein, 2010, Molecular characterization and phylogenetic analyses of heavy metal removal bacteria from the Persian gulf, Biotechnology, 18, 1 Rani, 2009, Strategies for Crop Improvement in Contaminated Soils Using Metal-Tolerant Bioinoculants, 105 Ahemad, 2011, Plant-growth-promoting fungicide-tolerant Rhizobium improves growth and symbiotic characteristics of lentil (Lens esculentus) in fungicide-applied soil, J. Plant Growth Regul., 10.1007/s00344-011-9195-y Kuiper, 2004, Rhizoremediation: a beneficial plant–microbe interaction, Mol. Plant Microbe Interact., 17, 6, 10.1094/MPMI.2004.17.1.6 Wu, 2006, Engineering plant-microbe symbiosis for rhizoremediation of heavy metals, Appl. Environ. Microbiol., 72, 1129, 10.1128/AEM.72.2.1129-1134.2006 Jing, 2007, Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils, J. Zhejiang Univ. Sci., B8, 192, 10.1631/jzus.2007.B0192 Wenzel, 2009, Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils, Plant Soil, 321, 385, 10.1007/s11104-008-9686-1 He, 2010, Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus, Appl. Soil Ecol., 44, 1, 10.1016/j.apsoil.2009.07.003 Sheng, 2008, Characterization 1 of heavy metal resistant endophytic bacteria from rape (Brassicanapus) roots potential in promoting the growth and lead accumulation of rape, Pollution, 156, 1164, 10.1016/j.envpol.2008.04.007 Fan, 2011, Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings, Bioresour. Technol., 122, 703, 10.1016/j.biortech.2010.08.046 Jain, 2009, Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients, Plant Physiol., 150, 1033, 10.1104/pp.109.136184 Barceló, 2004, Structural and Ultrastructural Changes in Heavy Metal Exposed Plants, 223 Nouri, 2011, Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead zinc mine, Hamedan, Iran, Environ. Earth Sci., 62, 639, 10.1007/s12665-010-0553-z Khatun, 2008, Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants, Environ. Exp. Bot., 64, 279, 10.1016/j.envexpbot.2008.02.004 Golshan, 2011, Copper and lead tolerance strategies in mustard (Sinapis arvensis) Egyption clover (Trifolium alexandrinum) and hairy vetch (Vicia villosa): role of some antioxidant enzymes, Am. Eurasian J. Agric. Environ. Sci., 11, 122 Imen, 2014, Bacteria associated with different legume species grown in heavy-metal contaminated soils, Int. J. Agric. Policy Res., 12, 460 Imen, 2013, Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant-growth-promoting bacteria, J. Basic Microbiol., 53, 1 Vincent, 1970 Beringer, 1974, R factor transfer in Rhizobium leguminosarum, J. Gen. Microbiol., 84, 188, 10.1099/00221287-84-1-188 Carrasco, 2005, Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine, Soil Biol. Biochem., 37, 1131, 10.1016/j.soilbio.2004.11.015 Sousa, 2008, Characterization of streptomycetes with potential to promote plant growth and biocontrol, Sci. Agric., 65, 50, 10.1590/S0103-90162008000100007 Mhamdi, 2002, Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils, FEMS Microbiol. Ecol., 41, 77, 10.1111/j.1574-6941.2002.tb00968.x Shahid, 2011, Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation, Ecotoxicol. Environ. Safe., 74, 78, 10.1016/j.ecoenv.2010.08.037 Ferrand, 2006, Phytoavailability of zirconium in relation with initial speciation, solubility and soil characteristics, Plant Soil, 287, 313, 10.1007/s11104-006-9079-2 Wang, 2006, Single-step microwave digestion with HNO3 alone for determination of trace elements in coal by ICP spectrometry, Talanta, 68, 1584, 10.1016/j.talanta.2005.08.034 Stolz, 2002, Accumulation properties of As, Cd, Cu, 1 Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exp. Bot., 47, 271, 10.1016/S0098-8472(02)00002-3 Bini, 1995 Chaoui, 1997, Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.), Plant Sci., 127, 139, 10.1016/S0168-9452(97)00115-5 Souguir, 2008, Exposure of Vicia faba and Pisum sativum to copper-induced genotoxicity, Protoplasma, 233, 203, 10.1007/s00709-008-0004-9 Bradford, 1976, A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principal of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Janda, 1999, Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants, Planta, 208, 175, 10.1007/s004250050547 Dary, 2010, “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant growth promoting rhizobacteria, J. Hazard. Mater., 1, 323, 10.1016/j.jhazmat.2009.12.035 Imen, 2013, Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant-growth-promoting bacteria, J. Basic Microbiol., 53, 1 Sharaff, 2013 Andreazza, 2010, Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil, Sci. Total Environ., 408, 1501, 10.1016/j.scitotenv.2009.12.017 Sun, 2010, Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper tolerant plant species on copper mine wasteland, Bioresour. Technol., 101, 501, 10.1016/j.biortech.2009.08.011 Rani, 2008, Decloination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain, Curr. Microbiol., 57, 78, 10.1007/s00284-008-9156-2 Dönmez, 1999, The effect of copper (II) ions on the growth and bioaccumulation properties of some yeasts, Process Biochem., 35, 135, 10.1016/S0032-9592(99)00044-8 Okeke, 2008, Environment and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium, Biol. Trace Elem. Res., 1–3, 229, 10.1007/s12011-008-8098-7 Wei, 2009, Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China, J. Hazard. Mater., 162, 50, 10.1016/j.jhazmat.2008.05.040 Marques, 2013, Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant-growth-promoting bacteria effects on phytoremediation strategies, Chemosphere, 92, 74, 10.1016/j.chemosphere.2013.02.055 Elleuch, 2013, Morphological and biochemical behavior of fenugreek (Trigonellafoenum graecum) under copper stress, Ecotoxicol. Environ. Safe., 98, 46, 10.1016/j.ecoenv.2013.09.028 Kopittke, 2006, Effect of Cu toxicity on the growth of Cowpea (Vigna unguiculata), Plant Soil, 279, 287, 10.1007/s11104-005-1578-z Guan, 2009, Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA, Chemosphere, 76, 623, 10.1016/j.chemosphere.2009.04.047 Khan, 2009, Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils, Environ. Chem. Lett., 7, 1, 10.1007/s10311-008-0155-0 Pattnaik, 2011, Accumulation and mobility of heavy metals in fenugreek (Trigonella foenum-graceum L.) and tomato (Lycopersicum esculentum Mill.) grown in the field amended with urban wastes, and their composts and vermicomposts, Int. J. Environ. Tech. Manage., 14, 147, 10.1504/IJETM.2011.039268 Wani, 2007, Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil, Arch. Environ. Contam. Toxicol., 55, 33, 10.1007/s00244-007-9097-y Sinha, 2008, Cadmium-induced siderophore production by a high Cd25 resistant S. bacterial strain relieved Cd toxicity in plants through root colonization, Curr. Microbiol., 56, 55, 10.1007/s00284-007-9038-z Thounaojam, 2012, Excess copper induced oxidative stress and response of antioxidants in rice, Plant. Physiol. Biochem., 53, 33, 10.1016/j.plaphy.2012.01.006 Sinha, 2005, Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes, Chemosphere, 58, 595, 10.1016/j.chemosphere.2004.08.071 Reddy, 2005, Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.), Chemosphere, 60, 97, 10.1016/j.chemosphere.2004.11.092 Corticeiro, 2006, The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure, Enzyme Microb. Technol., 40, 132, 10.1016/j.enzmictec.2005.10.053 Skorzynska-Polit, 2010, Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper, Acta Physiol. Plant, 32, 169, 10.1007/s11738-009-0393-1 Cui, 2011, Oxidative stress and change 1 in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc, Plant Soil Environ., 57, 34, 10.17221/193/2010-PSE Agrawal, 2007, Changes in oxidative stress defense in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with or without mineral nutrients and irradiated by supplemental ultraviolet-B, Environ. Exp. Bot., 59, 21, 10.1016/j.envexpbot.2005.09.009 Chen, 2008, The research and application of soil conditioner, Ecol. Environ., 17, 1282 Lebedev, 2011, Calcium-dioxolene complexes: rate, constants of pyrocatechol oxidation in the presence of Ca2+, Biophysics, 56, 188, 10.1134/S0006350911020187 Sandalio, 2001, Cadmium-induced changes in the growth than doxidative metabolis of pea plants, J. Exp. Bot., 52, 2115, 10.1093/jexbot/52.364.2115 Upadhyay, 2012, Impact of PGPR inoculation on growth and antioxidants status of wheat plant under saline condition, Plant Biol., 4, 605, 10.1111/j.1438-8677.2011.00533.x Upadhyay, 2006, Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects, Environ. Geol., 50, 397, 10.1007/s00254-006-0218-0