A rate equation model of stomatal responses to vapour pressure deficit and drought

Springer Science and Business Media LLC - Tập 2 - Trang 1-14 - 2002
D Eamus1, ST Shanahan2
1Institute for Water and Environmental Resource Management, University of Technology, Sydney, Australia
2School of Informatics, Northern Territory University, Darwin

Tóm tắt

Stomata respond to vapour pressure deficit (D) – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

Tài liệu tham khảo

Grantz DA: Plant responses to atmospheric humidity. Plant, Cell and Environment. 1990, 13: 667-679. Yong JWH, Wong SC, Farquhar GD: Stomatal responses to changes in vapour pressure difference between leaf and air. Plant, Cell and Environment. 1997, 20: 1213-1216. 10.1046/j.1365-3040.1997.d01-27.x. Raschke K: Movements of stomata. Encyclopedia of Plant Physiology Springer-Verlag, Berlin. 1979, 7: 15-29. Schulze E-D: Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil. Annual Review of Plant Physiology. 1986, 37: 247-274. 10.1146/annurev.pp.37.060186.001335. Thomas DS, Eamus D: The influence of pre-dawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations. Journal of Experimental Botany. 1999, 50: 243-251. 10.1093/jexbot/50.331.243. Thomas DS, Eamus D, Bell D: Optimization theory of stomatal behaviour II. Stomatal responses of several tree species of north Australia to changes in light, soil and atmospheric water content and temperature. Journal of Experimental Botany. 1999, 50: 393-400. Berryman D, Eamus D, Duff GA: Stomatal responses to a range of variables in two tropical tree species grown with CO2. Journal of Experimental Botany. 1994, 45: 539-546. Prior LD, Eamus D, Duff GA: Seasonal and diurnal patterns of carbon assimilation, stomatal conductance and leaf water potential in Eucalyptus tetrodonta saplings in a wet-dry savanna in northern Australia. Australian Journal of Botany. 1997, 45: 241-258. Maroco JP, Pereira JS, Chaves MM: Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Australian Journal of Plant Physiology. 1997, 24: 381-387. Kerstiens G: Cuticular water permeability and its physiological significance. Journal of Experimental Botany. 1996, 47: 1813-1832. Mott KA, Parkhurst DF: Stomatal responses to humidity in air and helox. Plant, Cell and Environment. 1991, 14: 509-515. Monteith JL: A reinterpretation of stomatal responses to humidity. Plant, Cell and Environment. 1995, 18: 357-364. Bunce JA: Does transpiration control stomatal responses to water vapour pressure deficit?. Plant, Cell and Environment. 1996, 19: 131-135. Meidner H, Mansfield TA: Physiology of stomata. McGraw-Hill, London. 1968 Schulze E-D, Lange OL, Buschbom U, Kappen L, Evenari M: Stomatal responses to changes in humidity in plants growing in the desert. Planta. 1972, 108: 259-270. Eamus D, Cole SC: Diurnal and seasonal comparisons of assimilation, phyllode conductance and water potential of three Acacia and one Eucalyptus species in the wet-dry tropics of Australia. Australian Journal of Botany. 1997, 45: 275-290. Raschke K: Stomatal action. Annual Review of Plant Physiology. 1975, 26: 306-340. 10.1146/annurev.pp.26.060175.001521. Sheriff DW: Epidermal transpiration and stomatal response to humidity: Some hypotheses explored. Plant, Cell and Environment. 1984, 7: 669-677. Maier-Maercker U: The role of peristomatal transpiration in the mechanism of stomatal movement. Plant, Cell and Environment. 1983, 6: 369-380. Dai Z, Edwards GE, Ku MSB: Control of photosynthesis and stomatal conductance in Ricinus communis by leaf to air vapour pressure deficit. Plant Physiology. 1992, 99: 1426-1434. Dewar RC: Interpretation of an empirical model for stomatal conductance in terms of guard cell function. Plant, Cell and Environment. 1995, 18: 365-372. Hall AE, Kaufman MR: Regulation of water transport in the soil-plant-atmosphere continuum. In "Perspectives of Biophysical Ecology". Edited by: D.M Gates and R.B Schmerl. 1975, Springer-Verlag New York, 187-202. Mott KA, Cardon ZG, Berry JA: Asymmetric patchy stomatal closure for the two surfaces of X. strumarium leaves at low humidity. Plant, Cell and Environment. 1993, 16: 25-34. Kerstiens G: Stomatal Response to leaf-to-air humidity gradient: a comparison of models. Phys Chem Earth. 1998, 23/4: 439-442. 10.1016/S0079-1946(98)00050-0. Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Jackson P: Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components. Plant, Cell and Environment. 1997, 20: 1242-1252. 10.1046/j.1365-3040.1997.d01-26.x. Gollan T, Turner NC, Schulze E-D: The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content III. In the sclerophyllous woody species Nerium oleander. Oecologia. 1985, 65: 356-362. Turner NC, Schulze E-D, Gollan T: The response of stomata and leaf gas exchange to vapour pressure deficits and water content. I. Species comparisons at high soil water content. . Oecologia. 1984, 63: 338-342. Franks PJ: Stomatal closure in dry air. Mechanisms and Ecology. PhD Thesis, Australian National University. Schulze E-D, Hall AE: Stomatal responses to water loss and CO2 assimilation rates in plants of contrasting environments. Encyclopedia of Plant Physiology, 12B. Edited by: O L Lange, P Nobel, C B Osmond and H aZiegler. 1982, Springer-Verlag. Berlin, 181-230. Prior LD, Eamus D, Duff GA: Seasonal trends in carbon assimilation, stomatal conductance, pre-dawn leaf water potential and growth in Terminalia ferdinandiana, a deciduous tree of northern Australian savannas. Australian Journal of Botany. 1997, 45: 53-69. Tardieu F, Simonneau T: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany. 1998, 49 (Special Issue): 419-432. 10.1093/jexbot/49.suppl_1.419. Wilkinson S, Davies WJ: Xylem Sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiology. 1997, 113: 559-573. Sperry JS, Pockman WT: Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant, Cell and Environment. 1993, 16: 279-287. Allen GJ, Amtmann A, Sanders D: Calcium dependent and calcium independent potassium mobilzation channels in Vicia faba guard cell vacuoles. Journal of Experimental Botany. 1998, 49: 305-318. 10.1093/jexbot/49.suppl_1.305. Pei Z-M, Schroeder JI, Schwarz M: Background ion channel activities in Arabidopsis guard cells and review of ion channel regulation by protein phosphorylation events. Journal of Experimental Botany. 1998, 49: 319-328. 10.1093/jexbot/49.suppl_1.319. Raschke K, Dickerson M, Pierce M: Mechanics of stomatal response to changes in water potential. In Plant Research. 1972, MSU/AEC Plant Research Lab., Michigan State University., 155-157. Jones H: Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany. 1998, 49: 387-398. 10.1093/jexbot/49.suppl_1.387. Fordyce IR, Duff GA, Eamus D: The water relations of Allosyncarpia ternata (Myrtaceae) at contrasting sites in the monsoonal tropics of northern Australia. Australian Journal of Botany. 1997, 45: 259-274. Reich PB, Hinckley TM: Influence of pre-dawn water potential and soil-to-leaf hydraulic conductance on maximum daily leaf diffusive conductance in two oak species. Functional Ecology. 1989, 3: 719-726. Thomas DS, Eamus D, Shanahan S: Studies on the influence of season, drought and xylem ABA on stomatal responses to leaf-to-air vapour pressure difference of trees of the Australian wet-dry tropics. Australian Journal of Botany. 2000, 48: 143-151. 10.1071/BT98090. Meinzer FC: The effect of vapour pressure on stomatal control of gas exchange in Douglas fir saplings. Oecologia. 1982, 54: 236-242. Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MGP: Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant, Cell and Environment. 1998, 21: 953-968. 10.1046/j.1365-3040.1998.00339.x. Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW: Atmospheric and hydraulic limitations on transpiration in Brazilian Cerrado woody species. Functional Ecology. 1999, 13: 273-282. 10.1046/j.1365-2435.1999.00313.x. Schulze E-D: Soil water deficits and atmospheric humidity as environmental signals. In Water Deficit – plant responses from cell to community. Edited by: J A C Smith and H Griffths. 1993, Bios publishers, Oxford, 129-145. Larcher W: Physiological Plant Ecology. Springer-Verlag, Berlin. 1983 Eamus D, Wilson JM: The effect of chilling temperatures on the water relations of leaf epidermal cells of Rhoeo discolor. Plant Science Letter. 1984, 37: 101-106. 10.1016/0304-4211(84)90210-4.