Improving aerobic stability and biogas production of maize silage using silage additives
Tài liệu tham khảo
Allen, 2003, Corn silage, 547
Danner, 2003, Acetic acid increases stability of silage under aerobic conditions, Appl. Environ. Microbiol., 69, 562, 10.1128/AEM.69.1.562-567.2003
DLG, 2000
Driehuis, 1999, Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability, J. Appl. Microbiol., 87, 583, 10.1046/j.1365-2672.1999.00856.x
Filya, 2003, The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages, J. Appl. Microbiol., 95, 1080, 10.1046/j.1365-2672.2003.02081.x
Gao, 2012, Methane yield through anaerobic digestion for various maize varieties in China, Bioresour. Technol., 118, 611, 10.1016/j.biortech.2012.05.051
Herrmann, 2011, Effects of ensiling, silage additives and storage period on methane formation of biogas crops, Bioresour. Technol., 102, 5153, 10.1016/j.biortech.2011.01.012
Herrmann, 2014, Biomass from landscape management of grassland used for biogas production: effects of harvest date and silage additives on feedstock quality and methane yield, Grass Forage Sci., 69, 549, 10.1111/gfs.12086
Honig, H., 1990. Evaluation of aerobic stability. In: Lindgren, S., Pettersson, K. (Eds.), Proceedings of the EUROBAC Conference, 12–16/08/1986, Uppsala. Grovfoder Grass and Forage Reports 3, pp. 76–82.
Honig, 1975, Umsetzungen und Verluste bei der Nachgärung, Das wirtschaftseigene Futter, 21, 25
Kafle, 2013, Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products, Bioresour. Technol., 142, 553, 10.1016/j.biortech.2013.05.018
Kreuger, 2011, Ensiling of crops for biogas production: effects on methane yield and total solids determination, Biotechnol. Biofuels, 4, 44, 10.1186/1754-6834-4-44
Kung, 2003, Silage additives, 305
McDonald, 1991
McEniry, 2014, Grass for biogas production: the impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems, Renew. Energy, 63, 524, 10.1016/j.renene.2013.09.052
Multerer, 2014, The impact of biogas raw materials on the utilized agricultural area – an assessment of alternative raw material, Anliegen Nat., 36, 54
Murphy, J.D., Rudolf, B., Weiland, P., Wellinger, A., 2011. Biogas from Crop Digestion. IEA Bioenergy – Task 37: Energy from Biogas. <http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/Update_ Energy_crop_2011.pdf> (accessed 13.07.15).
Neureiter, M., dos Santos, J.T.P., Lopez, C.P., Pichler, H., Kirchmayr, R., Braun, R., 2005. Effect of silage preparation on methane yields from whole crop maize silages. In: Proceedings of the 4th International Symposium on Anaerobic Digestion of Solid Waste, Copenhagen, Denmark, pp. 109–115.
Nussbaum, H., 2012. Effects of silage additives based on homo- or heterofermentative lactic acid bacteria on methane yields in the biogas processing. In: Proceedings of the XVI International Silage Conference, 2–4 July 2012, Hämeenlinna, Finland. MTT Agrifood Research Finland, University of Helsinki, pp. 452–453.
Oude Elferink, 2001, Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri, Appl. Environ. Microbiol., 67, 125, 10.1128/AEM.67.1.125-132.2001
Pakarinen, 2008, Storing energy crops for methane production: effects of solids content and biological additive, Bioresour. Technol., 99, 7074, 10.1016/j.biortech.2008.01.007
Plöchl, 2009, Influence of silage additives on methane yield and economic performance of selected feedstock, Agric. Eng. Int.: CIGR J, XI, 1
Ranjit, 2000, The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage, J. Dairy Sci., 83, 526, 10.3168/jds.S0022-0302(00)74912-5
Rath, 2013, Specific biogas yield of maize can be predicted by the interaction of four biochemical constituents, Bioenergy Res., 6, 939, 10.1007/s12155-013-9318-3
Schittenhelm, 2008, Chemical composition and methane yield of maize hybrids with contrasting maturity, Eur. J. Agron., 29, 72, 10.1016/j.eja.2008.04.001
VDI, 2006. VDI standard procedures 4630: fermentation of organic materials. In: Verein Deutscher Ingenieure (Eds.), Characterisation of the substrate, sampling, collection of material data, fermentation tests. Beuth Verlag, Berlin, pp. 92.
VDLUFA, 2006. Die chemische Untersuchung von Futtermitteln. Methodenbuch Band III. 6th Supplementary Delivery, third ed. VDLUFA-Verlag, Darmstadt, Germany.
Vervaeren, 2010, Biological ensilage additives as pretreatment for maize to increase the biogas production, Renew. Energy, 35, 2089, 10.1016/j.renene.2010.02.010
Weißbach, F., 2005. A simple method for the correction of fermentation losses measured in laboratory silos. In: Proceedings of the XIVth International Silage Conference Silage Production and Utilisation, 03.-06.07.2005, Belfast, Northern Ireland. Wageningen Academic Publishers, pp. 278.
Weißbach, 2008, Correcting the dry matter content of maize silages as a substrate for biogas production, Landtechnik, 63, 82
Wilkinson, 2013, The aerobic stability of silage: key findings and recent developments, Grass Forage Sci., 68, 1, 10.1111/j.1365-2494.2012.00891.x
