Application of Laplace decomposition method on semi-infinite domain
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adomian, G., Serrano, S.E.: Stochastic contaminant transport equation in Porous media. Appl. Math. Lett. 11, 53–55 (1998)
Gejji, V.D., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301, 508–518 (2005)
Jafari, H., Gejji, V.D.: Revised Adomian decomposition method for solving a system of nonlinear equations. Appl. Math. Comput. 175, 1–7 (2006)
Chun, C., Jafari, H., Kim, Y.: Numerical method for the wave and nonlinear diffusion equations with the homotopy perturbation method. Comput. Math. Appl. 57, 1226–1231 (2009)
Jafari, H., Gejji, V.D.: Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 180, 488–497 (2006)
Jafari, H., Gejji, V.D.: Revised Adomian decomposition method for solving systems of ordinary and fractional differential equations. Appl. Math. Comput. 181, 598–608 (2006)
Wang, L.: A new algorithm for solving classical Blasius equation. Appl. Math. Comput. 157, 1–9 (2004)
Wazwaz, A.M.: The modified decomposition method and Padé approximants for a boundary layer equation in unbounded Adomian. Appl. Math. Comput. 177, 737 (2006)
Wazwaz, A.M.: A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos Solitons Fractals, 37, 1136–1142 (2008)
Wazwaz, A.M.: A new technique for calculating adomian polynomials for nonlinear polynomials. Appl. Math. Comput. 111, 33–51 (2002)
Khuri, S.A.: A Laplace decomposition algorithm applied to class of nonlinear differential equations. J. Math. Appl. 4, 141–155 (2001)
Yusufoglu (Agadjanov), E.: Numerical solution of Duffing equation by the Laplace decomposition algorithm. Appl. Math. Comput. 177, 572–580 (2006)
Adomian, G.: The decomposition method. Kluwer Acad, Boston (1994)
Wazwaz, A.M.: Partial differential equations methods and applications. Balkema, Netherland (2002)
Wazwaz, A.M.: A study of boundary-layer equation arising in an incompressible fluid. Appl. Math. Comput. 87, 199–204 (1997)
Wazwaz, A.M.: The variational iterative method for solving two forms of Blasius equation on a half-infinite domain. Appl. Math. Comput. 188 485–491 (2007)
Boyd, J.P.: Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain. Comput. Phys. 11, 299–303 (1997)
Baker, G.A.: Essentials of Padé approximants. Academic, London (1975)