Response of bi-disperse polyelectrolyte brushes to external electric fields — A numerical self-consistent field theory study

Chinese Journal of Polymer Science - Tập 35 - Trang 98-107 - 2016
Cong Kang1, Shuang-liang Zhao2, Chao-hui Tong1
1Department of Physics, Ningbo University, Ningbo, China
2College of Chemical Engineering, East China University of Science and Technology, Shanghai, China

Tóm tắt

The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface charges on the PE-grafted electrode and a second parallel electrode. The numerical study reveals that, under a positive external electric field, the shorter and negatively charged PE chains are more responsive than the longer PE chains in terms of the relative changes in their respective brush heights. Whereas under a negative external electric field, the opposite was observed. The total electric force on the grafted PE chains was calculated and it was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The underlying mechanism was unraveled through analyzing the total electric field across the two oppositely charged electrodes.

Tài liệu tham khảo

Napper, D.H., “Polymeric stabilization of colloidal dispersions”, Academic Press, London, 1983, Vol. 7 Halperin, A., Tirrell, M. and Lodge, T.P., Adv. Polym. Sci., 1991, 100: 31 Naji, A., Seidel, C. and Netz, R.R., Adv. Polym. Sci., 2006, 198: 149 Borisov, O.V., Zhulina, E.B. and Birshtein, T.M., Maromolecules, 1994, 27: 4795 Netz, R.R. and Andelman, D., Phys. Rep., 2003, 380(1-2): 1 Naji, A., Netz, R.R. and Seidel, C., Eur. Phys. J. E, 2003, 12: 223 Witte, K.N., Kim, S. and Won, Y.Y., J. Phys. Chem. B, 2009, 113: 11076 Seidel, C., Macromolecules, 2003, 36: 2536 Hehmeyer, O.J., Arya, G., Panagiotopoulos, A.Z. and Szleifer, I., J. Chem. Phys., 2007, 126: 244902 Wynveen, A. and Likos, C.N., Phys. Rev. E, 2009, 80: 010801 Linse, P., J. Chem. Phys., 2007, 126: 114903 Russano, D., Carrillo, J.M.Y. and Dobrynin, A.V., Langmuir, 2011, 27: 11044 Ou, Y.P., Sokoloff, J.B. and Stevens, M.J., Phys. Rev. E, 2012, 85: 011801 He, S.Z., Merlitz, H., Chen, L., Sommer, J.U. and Wu, C.X., Macromolecules, 2010, 43: 7845 Ibergay, C., Malfreyt, P. and Tildesley, D.J., J. Phys. Chem. B, 2010, 114: 7274 Wu, J.M., Zhao. S., Gao. L., Wu, J.Z. and Gao, D., Lab Chip., 2011, 11: 4036 Zhao, S., Wu, J.M., Gao, D. and Wu, J.Z., J. Chem. Phys., 2011, 134: 065103 Wu, J.M., Zhao, S., Gao, L., Wu, J.Z. and Gao, D., J. Phys. Chem. B, 2013, 117: 2267 Tsori, Y., Andelman, D. and Joanny, J.F., Europhys. Lett., 2008, 82: 46001 Yamamoto, T. and Pincus, P.A., Europhys. Lett., 2011, 95: 48003 Migliorini, G., Macromolecules, 2010, 43: 9168 Cao, Q.Q., Zuo, C.C., Li, L.J. and Yan, G., Biomicrofluidics, 2011, 5: 044119 Ouyang, H., Xia, Z.H. and Zhe, J., Nanotechnology, 2009, 20: 195703 Ho, Y.F., Shendruk, T.N., Slater, G.W. and Hsiao, P.Y., Langmuir, 2013, 29: 2359 Merlitz, H., Li, C., Wu, C.X. and Sommer, J.U., Soft Matter, 2015, 11: 5688 Meng, D. and Wang, Q., J. Chem. Phys., 2011, 135: 224904 Tong, C., J. Chem. Phys., 2015, 143: 054903 Shi, A.C. and Noolandi, J., Macromol. Theory Simul., 1999, 8(3): 214 Wang, Q., Taniguchi, T. and Fredrickson, G.H., J. Phys. Chem. B, 2004, 108: 6733