Fabrication of wide-spectra-responsive NA/NH2-MIL-125(Ti) with boosted activity for Cr(VI) reduction and antibacterial effects
Tài liệu tham khảo
Zhang, 2022, Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction, J. Alloys Compd., 891, 10.1016/j.jallcom.2021.161994
Sharma, 2017, Drinking water contamination and treatment techniques, Appl. Water Sci., 7, 1043, 10.1007/s13201-016-0455-7
Miralles-Cuevas, 2021, Simultaneous bacterial inactivation and microcontaminant removal by solar photo-Fenton mediated by Fe3+-NTA in WWTP secondary effluents, Water Res., 205, 10.1016/j.watres.2021.117686
Shah, 2020, Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns, Ecol. Eng., 152, 10.1016/j.ecoleng.2020.105882
P.R. Rout, T.C. Zhang, P. Bhunia, R.Y. Surampalli, Treatment technologies for emerging contaminants in wastewater treatment plants: A review, Sci. Total Environ. 753 (2021) 141990.
Barrera-Díaz, 2012, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223–224, 1, 10.1016/j.jhazmat.2012.04.054
Shi, 2020, 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO, Angew. Chem. Int. Ed., 59, 9088, 10.1002/anie.202000723
Xu, 2022, A nanocubicle-like 3D adsorbent fabricated by in situ growth of 2D heterostructures for removal of aromatic contaminants in water, J. Hazard. Mater., 423, 10.1016/j.jhazmat.2021.127004
Wang, 2016, Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review, Appl. Catal. B Environ., 193, 198, 10.1016/j.apcatb.2016.04.030
Liang, 2015, MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes, J. Hazard. Mater., 287, 364, 10.1016/j.jhazmat.2015.01.048
Zhang, 2019, Progress and challenges in photocatalytic disinfection of waterborne Viruses: a review to fill current knowledge gaps, Chem. Eng. J., 355, 399, 10.1016/j.cej.2018.08.158
Zhang, 2020, Improved disinfection performance towards human adenoviruses using an efficient metal-free heterojunction in a vis-LED photocatalytic membrane reactor: operation analysis and optimization, Chem. Eng. J., 392, 10.1016/j.cej.2019.123687
Hao, 2021, Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis, Mater. Today., 46, 212, 10.1016/j.mattod.2021.01.029
Hao, 2022, Boosted selective catalytic nitrate reduction to ammonia on carbon/bismuth/bismuth oxide photocatalysts, J. Clean. Prod., 331, 10.1016/j.jclepro.2021.129975
Mu, 2020, A review on metal-organic frameworks for photoelectrocatalytic applications, Chin. Chem. Lett., 31, 1773, 10.1016/j.cclet.2019.12.015
Fu, 2022, MOFs for water purification, Chin. Chem. Lett., 22, 1647, 10.1016/j.cclet.2021.08.065
Zhang, 2022, The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review, Chin. Chem. Lett.
Lyu, 2021, Cooperative TiO2 photocatalysis with TEMPO and N-hydroxysuccinimide for blue light-driven selective aerobic oxidation of amines, Chemosphere, 262, 10.1016/j.chemosphere.2020.127873
Zhao, 2021, Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation, J. Hazard. Mater., 419, 10.1016/j.jhazmat.2021.126466
Pettinari, 2021, Antimicrobial MOFs, Coord. Chem. Rev., 446, 10.1016/j.ccr.2021.214121
Jiang, 2020, Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction, Nature, 586, 549, 10.1038/s41586-020-2738-2
Xiao, 2019, Metal-organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res., 52, 356, 10.1021/acs.accounts.8b00521
Zhou, 2020, Ternary Ag/Ag3PO4/MIL-125-NH2 Z-scheme heterojunction for boosted photocatalytic Cr(VI) cleanup under visible light, Chin. Chem. Lett., 31, 2645, 10.1016/j.cclet.2020.02.048
Yang, 2021, Materials Institute Lavoisier (MIL) based materials for photocatalytic applications, Coord. Chem. Rev., 438, 10.1016/j.ccr.2021.213874
Wang, 2020, Recent advances in MOF-based photocatalysis: environmental remediation under visible light, Inorg. Chem. Front., 7, 300, 10.1039/C9QI01120J
Devic, 2014, High valence 3p and transition metal based MOFs, Chem. Soc. Rev., 43, 6097, 10.1039/C4CS00081A
Xu, 2020, Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2, Chinese, J. Catal., 41, 1468
Hao, 2019, Anthraquinones as photoredox active ligands of TiO2 for selective aerobic oxidation of organic sulfides, Appl. Catal. B Environ., 259, 10.1016/j.apcatb.2019.118038
Nakata, 2012, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev., 13, 169, 10.1016/j.jphotochemrev.2012.06.001
Fu, 2012, An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction, Angew Chem. Int. Ed., 51, 3364, 10.1002/anie.201108357
Wang, 2015, Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction, J. Hazard. Mater., 286, 187, 10.1016/j.jhazmat.2014.11.039
Lian, 2016, A postsynthetic modified MOF hybrid as heterogeneous photocatalyst for α-phenethyl alcohol and reusable fluorescence sensor, Inorg. Chem., 55, 11831, 10.1021/acs.inorgchem.6b01928
Li, 2016, TiO2 encapsulated in salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB, Appl. Catal. B Environ., 191, 192, 10.1016/j.apcatb.2016.03.034
Daliran, 2018, Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH2 as heterogeneous catalyst for oxidation reactions, J. Colloid Interface Sci., 532, 700, 10.1016/j.jcis.2018.07.140
Nasalevich, 2013, Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis, Chem. Commun., 49, 10575, 10.1039/C3CC46398B
Huang, 2020, Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks, Appl. Catal. B Environ., 273, 10.1016/j.apcatb.2020.119087
Zhang, 2021, Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125, Appl. Catal. B Environ., 292, 10.1016/j.apcatb.2021.120197
Gao, 2021, Engineering of a hollow-structured Cu2−XS nano-homojunction platform for near infrared-triggered infected wound healing and cancer therapy, Adv. Funct. Mater., 31, 1, 10.1002/adfm.202106700
Chen, 2022, One-pot synthesis of the MIL-100(Fe) MOF/MOX homojunctions with tunable hierarchical pores for the photocatalytic removal of BTXS, Appl. Catal. B Environ., 303, 10.1016/j.apcatb.2021.120885
Fu, 2021, Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance, Chem. Eng. J., 412, 10.1016/j.cej.2021.128722
Moreira, 2012, Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti)-NH2, Microporous Mesoporous Mater., 158, 229, 10.1016/j.micromeso.2012.03.039
Jia, 2013, The analysis of a plane wave pseudopotential density functional theory code on a GPU machine, Comput. Phys. Commun., 184, 9, 10.1016/j.cpc.2012.08.002
Jia, 2013, Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines, J. Comput. Phys., 251, 102, 10.1016/j.jcp.2013.05.005
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (2010) 154104–154100.
Hu, 1976, Special points for Brillonin-zone integrations, Phys. Rev. B., 13, 5188, 10.1103/PhysRevB.13.5188
Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970
Rodríguez, 2017, Facile synthesis of potassium poly(heptazine imide) (PHIK)/Ti-based metal-organic framework (MIL-125-NH2) composites for photocatalytic applications, ACS Appl. Mater. Interfaces, 9, 22941, 10.1021/acsami.7b04745
Emam, 2017, Anti-UV Radiation textiles designed by embracing with nano-MIL (Ti, In)-metal organic framework, ACS Appl. Mater. Interfaces, 9, 28034, 10.1021/acsami.7b07357
Wen, 2018, Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution, Colloids Surfaces A Physicochem. Eng. Asp., 541, 58, 10.1016/j.colsurfa.2018.01.011
Guo, 2022, Substituent engineering in g-C3N4/COF heterojunctions for rapid charge separation and high photo-redox activity, Science China Chem, 65, 1704, 10.1007/s11426-022-1350-1
Chen, 2019, Modified UiO-66 frameworks with methylthio, thiol and sulfonic acid function groups: the structure and visible-light-driven photocatalytic property study, Appl. Catal. B Environ., 259, 10.1016/j.apcatb.2019.118047
Oveisi, 2018, MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems, J. Hazard. Mater., 347, 123, 10.1016/j.jhazmat.2017.12.057
Gao, 2017, Coordination chemistry in the design of heterogeneous photocatalysts, Chem. Soc. Rev., 46, 2799, 10.1039/C6CS00727A
Han, 2018, A methylthio-functionalized-MOF photocatalyst with high performance for visible-light-driven H2 evolution, Angew Chem. Int. Ed., 57, 9864, 10.1002/anie.201806077
Gao, 2019, Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI, Chem. Eng. J., 374, 10, 10.1016/j.cej.2019.05.151
Swain, 2020, Constructing a novel surfactant-free MoS2 nanosheet modified MgIn2S4 marigold microflower: an efficient visible-light driven 2D–2D p-n heterojunction photocatalyst toward HER and pH regulated NRR, ACS Sustain. Chem. Eng., 8, 4848, 10.1021/acssuschemeng.9b07821
Bose, 1996, Redox potentials of chromium(V)/(IV), -(V)/(III), and -(IV)/(III) complexes with 2-ethyl-2-hydroxybutanoato(2-/1-) ligands, J. Am. Chem. Soc., 118, 7139, 10.1021/ja954047+
Wang, 2004, Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation, Ind. Eng. Chem. Res., 43, 1665, 10.1021/ie030580j
Liang, 2015, NH2-mediated indium metal-organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI), Appl. Catal. B Environ., 162, 245, 10.1016/j.apcatb.2014.06.049
Li, 2015, Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach, Water Res., 86, 17, 10.1016/j.watres.2015.05.053
Podporska-Carroll, 2015, Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes, Appl. Catal. B Environ., 176–177, 70, 10.1016/j.apcatb.2015.03.029
Tan, 2022, Fabrication of visible-light-active Fe-2MI film electrode for simultaneous removal of Cr(VI) and phenol, Mater. Sci. Semicond. Process., 151, 10.1016/j.mssp.2022.107013
Giannakopoulou, 2017, Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal, Chem. Eng. J., 310, 571, 10.1016/j.cej.2015.12.102
Zheng, 2018, Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability, Appl. Catal. B Environ., 237, 1, 10.1016/j.apcatb.2018.05.060
Xu, 2015, Layered metal-organic framework/graphene nanoarchitectures for organic photosynthesis under visible light, J. Mater. Chem. A, 3, 24261, 10.1039/C5TA06838J
Keum, 2018, Titanium-carboxylate metal-organic framework based on an unprecedented Ti-oxo chain cluster, Angew Chem. Int. Ed., 57, 14852, 10.1002/anie.201809762
Li, 2022, Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): performance, toxicity evaluation and mechanism insight, J. Mater. Sci. Technol., 123, 177, 10.1016/j.jmst.2022.02.012
Hendon, 2013, Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization, J. Am. Chem. Soc., 135, 10942, 10.1021/ja405350u
Ye, 2016, Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional, Chem. Eng. J., 3, 311